Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
Biochemistry ; 40(51): 15684-92, 2001 Dec 25.
Article in English | MEDLINE | ID: mdl-11747444

ABSTRACT

4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA (4-HBA-CoA) via a multistep mechanism involving initial attack of Asp145 on C(4) of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of the chloride ion to form an arylated enzyme intermediate (EAr) and then ester hydrolysis in the EAr to form product. This study examines the role of binding interactions in dehalogenase catalysis. The enzyme and substrate groups positioned for favorable binding interaction were identified from the X-ray crystal structure of the enzyme-4-HBA-3'-dephospho-CoA complex. These groups were individually modified (via site-directed mutagenesis or chemical synthesis) for the purpose of disrupting the binding interaction. The changes in the Gibbs free energy of the enzyme-substrate complex (DeltaDeltaG(ES)) and enzyme-transition state complex (DeltaDeltaG) brought about by the modification were measured. Cases where DeltaDeltaG exceeds DeltaDeltaG(ES) are indicative of binding interactions used for catalysis. On the basis of this analysis, we show that the H-bond interactions between the Gly114 and Phe64 backbone amide NHs and the substrate benzoyl C=O group contribute an additional 3.1 kcal/mol of stabilization at the rate-limiting transition state. The binding interactions between the enzyme and the substrate CoA nucleotide moiety also intensify in the rate-limiting transition state, reducing the energy barrier to catalysis by an additional 3.3 kcal/mol. Together, these binding interactions contribute approximately 10(6) to the k(cat)/K(m).


Subject(s)
Hydrolases/chemistry , Hydrolases/metabolism , Pantetheine/analogs & derivatives , Acyl Coenzyme A/metabolism , Binding Sites/genetics , Binding, Competitive/genetics , Catalysis , Coenzyme A/chemistry , Coenzyme A/metabolism , Enzyme Stability/genetics , Hydrolases/genetics , Kinetics , Ligands , Mutagenesis, Site-Directed , Pantetheine/metabolism , Substrate Specificity/genetics , Thermodynamics
2.
Biochemistry ; 40(45): 13466-73, 2001 Nov 13.
Article in English | MEDLINE | ID: mdl-11695893

ABSTRACT

Pyruvate phosphate dikinase (PPDK) catalyzes the reversible reaction: ATP + P(i) + pyruvate <--> AMP + PP(i) + PEP using Mg2+ and NH4+ ions as cofactors. The reaction takes place in three steps, each mediated by a carrier histidine residue located on the surface of the central domain of this three-domain enzyme: (1) E-His + ATP <--> E-His-PP.AMP, (2) E-His-PP.AMP + P(i) <--> E-His-P + AMP + PP(i), (3) E-His-P + pyruvate <--> E-His + PEP. The first two partial reactions are catalyzed at an active site located on the N-terminal domain, and the third partial reaction is catalyzed at an active site located on the C-terminal domain. For catalytic turnover, the central domain travels from one terminal domain to the other. The goal of this work is to determine whether the two connecting linkers direct the movement of the central domain between active sites during catalytic turnover. The X-ray crystal structure of the enzyme suggests interaction between the two linkers that may result in their coordinated movement. Mutations were made at the linkers for the purpose of disrupting the linker-linker interaction and, hence, synchronized linker movement. Five linker mutants were analyzed. Two of these contain 4-Ala insertions within the solvated region of the linker, and three have 3-residue deletions in this region. The efficiencies of the mutants for catalysis of the complete reaction as well as the E-His + ATP <--> E-His-PP.AMP partial reaction at the N-terminal domain and the E-His + PEP <--> E-His-P + pyruvate reaction at the C-terminal domain were measured to assess linker function. Three linker mutants are highly active catalysts at both active sites, and the fourth is highly active at one site but not the other. These results are interpreted as evidence against coordinated linker movement, and suggest instead that the linkers move independently as the central domain travels between active sites. It is hypothesized that while the linkers play a passive role in central domain-terminal domain docking, their structural design minimizes the conformational space searched in the diffusion process.


Subject(s)
Clostridium/enzymology , Pyruvate, Orthophosphate Dikinase/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Catalysis , Models, Molecular , Mutation , Protein Structure, Tertiary , Pyruvate, Orthophosphate Dikinase/chemistry , Pyruvic Acid/metabolism
3.
Biochemistry ; 40(45): 13474-82, 2001 Nov 13.
Article in English | MEDLINE | ID: mdl-11695894

ABSTRACT

4-chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA by attack of Asp145 on the C4 of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of chloride ion to form an arylated enzyme intermediate (EAr) and, finally, ester hydrolysis in EAr to form 4-hydroxybenzoyl-CoA (4-HBA-CoA). This study examines the contribution of the active site His90 to catalysis of this reaction pathway. The His90 residue was replaced with glutamine by site-directed mutagenesis. X-ray crystallographic analysis of H90Q dehalogenase complexed with 4-HBA-CoA revealed that the positions of the catalytic groups are unchanged from those observed in the structure of the 4-HBA-CoA-wild-type dehalogenase complex. The one exception is the Gln90 side chain, which is rotated away from the position of the His90 side chain. The vacated His90 site is occupied by two water molecules. Kinetic techniques were used to evaluate ligand binding and catalytic turnover rates in the wild-type and H90Q mutant dehalogenases. The rate constants for 4-CBA-CoA (both 7 microM(-1) x s(-1)) and 4-HBA-CoA (33 and 11 microM(-1) x s(-1)) binding to the two dehalogenases are similar in value. For wild-type dehalogenase, the rate constant for a single turnover is 2.3 s(-1) while that for multiple turnovers is 0.7 s(-1). For H90Q dehalogenase, these rate constants are 1.6 x 10(-2) and 2 x 10(-4) s(-1). The rate constants for EMc formation in wild-type and mutant dehalogenase are approximately 200 s(-1) while the rate constants for EAr formation are 40 and 0.3 s(-1), respectively. The rate constant for hydrolysis of EAr in wild-type dehalogenase is 20 s(-1) and in the H90Q mutant, 0.13 s(-1). The 133-fold reduction in the rate of EAr formation in the mutant may be the result of active site hydration, while the 154-fold reduction in the rate EAr hydrolysis may be the result of lost general base catalysis. Substitution of the His90 with Gln also introduces a rate-limiting step which follows catalysis, and may involve renewing the catalytic site through a slow conformational change.


Subject(s)
Histidine/metabolism , Hydrolases/metabolism , Binding Sites , Catalysis , Crystallization , Crystallography, X-Ray , Glutamine/genetics , Glutamine/metabolism , Histidine/genetics , Hydrolases/chemistry , Hydrolases/genetics , Kinetics , Ligands , Models, Molecular , Mutation , Protein Conformation , Substrate Specificity , Time Factors
4.
J Biol Chem ; 276(40): 37630-9, 2001 Oct 05.
Article in English | MEDLINE | ID: mdl-11468288

ABSTRACT

Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.


Subject(s)
Adenosine Triphosphate/metabolism , Clostridium/enzymology , Pyruvate, Orthophosphate Dikinase/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Electrons , Kinetics , Magnesium , Models, Molecular , Mutagenesis, Site-Directed , Polyphosphates/metabolism , Protein Conformation , Protein Structure, Tertiary , Pyruvate, Orthophosphate Dikinase/chemistry , Pyruvate, Orthophosphate Dikinase/genetics , Ribose/metabolism , Substrate Specificity
5.
J Biol Chem ; 275(52): 41156-65, 2000 Dec 29.
Article in English | MEDLINE | ID: mdl-10995759

ABSTRACT

Potential domain-domain docking residues, identified from the x-ray structure of the Clostridium symbiosum apoPPDK, were replaced by site-directed mutagenesis. The steady-state and transient kinetic properties of the mutant enzymes were determined as a way of evaluating docking efficiency. PPDK mutants, in which one of two stringently conserved docking residues located on the N-terminal domain (Arg(219) and Glu(271)) was substituted, displayed largely unimpeded catalysis of the phosphoenolpyruvate partial reaction at the C-terminal domain, but significantly impaired catalysis (>10(4)) of the ATP pyrophosphorylation of His(455) at the N-terminal domain. In contrast, alanine mutants of two potential docking residues located on the N-terminal domain (Ser(262) and Lys(149)), which are not conserved among the PPDKs, exhibited essentially normal catalytic turnover. Arg(219) and Glu(271) were thus proposed to play an important role in guiding the central domain and, hence, the catalytic His(455) into position for catalysis. Substitution of central domain residues Glu(434)/Glu(437) and Thr(453), the respective docking partners of Arg(219) and Glu(271), resulted in mutants impaired in catalysis at the ATP active site. The x-ray crystal structure of the apo-T453A PPDK mutant was determined to test for possible misalignment of residues at the N-terminal domain-central domain interface that might result from loss of the Thr(453)-Glu(271) binding interaction. With the exception of the mutation site, the structure of T453A PPDK was found to be identical to that of the wild-type enzyme. It is hypothesized that the two Glu(271) interfacial binding sites that remain in the T453A PPDK mutant, Thr(453) backbone NH and Met(452) backbone NH, are sufficient to stabilize the native conformation as observed in the crystalline state but may be less effective in populating the reactive conformation in solution.


Subject(s)
Clostridium/enzymology , Pyruvate, Orthophosphate Dikinase/chemistry , Adenosine Triphosphate/metabolism , Binding Sites , Catalysis , Kinetics , Mutation , Structure-Activity Relationship
6.
Biochemistry ; 39(34): 10385-96, 2000 Aug 29.
Article in English | MEDLINE | ID: mdl-10956028

ABSTRACT

Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolysis of phosphonoacetaldehyde to acetaldehyde and phosphate using Mg(II) as cofactor. The reaction proceeds via a novel bicovalent catalytic mechanism in which an active-site nucleophile abstracts the phosphoryl group from the Schiff-base intermediate formed from Lys53 and phosphonoacetaldehyde. In this study, the X-ray crystal structure of the Bacillus cereus phosphonatase homodimer complexed with the phosphate (product) analogue tungstate (K(i) = 50 microM) and the Mg(II) cofactor was determined to 3.0 A resolution with an R(cryst) = 0.248 and R(free) = 0.284. Each monomer is made up of an alpha/beta core domain consisting of a centrally located six-stranded parallel beta-sheet surrounded by six alpha-helices. Two flexible, solvated linkers connect to a small cap domain (residues 21-99) that consists of an antiparallel, five-helix bundle. The subunit-subunit interface, formed by the symmetrical packing of the two alpha8 helices from the respective core domains, is stabilized through the hydrophobic effect derived from the desolvation of paired Met171, Trp164, Tyr162, Tyr167, and Tyr176 side chains. The active site is located at the domain-domain interface of each subunit. The Schiff base forming Lys53 is positioned on the cap domain while tungstate and Mg(II) are bound to the core domain. Mg(II) ligands include two oxygens of the tungstate ligand, one oxygen of the carboxylates of Asp12 and Asp186, the backbone carbonyl oxygen of Ala14, and a water that forms a hydrogen bond with the carboxylate of Asp190 and Thr187. The guanidinium group of Arg160 binds tungstate and the proposed nucleophile Asp12, which is suitably positioned for in-line attack at the tungsten atom. The side chains of the core domain residue Tyr128 and the cap domain residues Cys22 and Lys53 are located nearby. The identity of Asp12 as the active-site nucleophile was further evidenced by the observed removal of catalytic activity resulting from Asp12Ala substitution. The similarity of backbone folds observed in phosphonatase and the 2-haloacid dehalogenase of the HAD enzyme superfamily indicated common ancestry. Superposition of the two structures revealed a conserved active-site scaffold having distinct catalytic stations. Analysis of the usage of polar amino acid residues at these stations by the dehalogenases, phosphonatases, phosphatases, and phosphomutases of the HAD superfamily suggests possible ways in which the active site of an ancient enzyme ancestor might have been diversified for catalysis of C-X, P-C, and P-O bond cleavage reactions.


Subject(s)
Bacillus cereus/enzymology , Hydrolases/chemistry , Hydrolases/metabolism , Amino Acid Sequence , Bacillus cereus/genetics , Catalysis , Catalytic Domain/genetics , Conserved Sequence , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Hydrolases/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Quaternary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity , Tungsten Compounds/pharmacology
7.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 2): 206-9, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10666607

ABSTRACT

Phosphonoacetaldehyde hydrolase, a C-P bond-cleaving enzyme which utilizes an unusual bicovalent catalytic strategy, has been crystallized by the hanging-drop vapor-diffusion method using PEG 4000 as the precipitant. The crystals belong to the monoclinic system and belong to space group C2, with unit-cell parameters a = 210.5, b = 45.5, c = 64.7 A, beta = 105.0 degrees. The asymmetric unit contains a dimer related by a non-crystallographic dyad. In addition to a 2.7 A native data set, the following data sets have been collected: a 2.4 A data set from crystals complexed with the intermediate analog vinyl sulfonate, a 3.0 A three-wavelength MAD data set from crystals complexed with the product analog WO(4)(2-), as well as several heavy-atom data sets to 3.0 A or better, of which only three have proven useful for MIR calculations. Examination of the native Patterson map revealed NCS that made previously uninterpretable derivative data useful. Independent phase sets were first calculated and refined for the MAD and MIR experiments separately and were then combined. The combined phase set was further improved by solvent flattening, histogram matching and NCS averaging. Interpretation of the resulting electron-density map is currently under way.


Subject(s)
Hydrolases/chemistry , Bacillus cereus/enzymology , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Crystallization , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/enzymology , Hydrolases/biosynthesis , Hydrolases/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
8.
Biochemistry ; 38(43): 14165-73, 1999 Oct 26.
Article in English | MEDLINE | ID: mdl-10571990

ABSTRACT

PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed.


Subject(s)
Phosphotransferases (Phosphomutases)/genetics , Phosphotransferases (Phosphomutases)/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites/genetics , Bivalvia/enzymology , Bivalvia/genetics , Catalysis , Cloning, Molecular , Conserved Sequence , Kinetics , Magnesium/metabolism , Models, Molecular , Molecular Sequence Data , Multigene Family , Mutagenesis, Site-Directed , Phosphotransferases (Phosphomutases)/biosynthesis , Phosphotransferases (Phosphomutases)/chemistry , Protein Conformation , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Biochemistry ; 38(24): 7638-52, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10387003

ABSTRACT

The structures and chemical pathways associated with the members of the 2-enoyl-CoA hydratase/isomerase enzyme superfamily are compared to show that a common active site design provides the members of this family with a CoA binding site, an expandable acyl binding pocket, an oxyanion hole for binding/polarizing the thioester C=O, and multiple active site stations for the positioning of acidic and basic amino acid side chains for use in proton shuttling. It is hypothesized that this active site template can be tailored to catalyze a wide range of chemical transformations through strategic positioning of acid/base residues among the active site stations. To test this hypothesis, the active site of one member of the 2-enoyl-CoA hydratase/isomerase family, 4-chlorobenzoyl-CoA dehalogenase, was altered by site-directed mutagenesis to include the two glutamate residues functioning in acid/base catalysis in a second family member, crotonase. Catalysis of the syn hydration of crotonyl-CoA, absent in the wild-type 4-chlorobenzoyl-CoA dehalogenase, was shown to occur with the structurally modified 4-chlorobenzoyl-CoA dehalogenase at kcat = 0.06 s-1 and Km = 50 microM.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/chemistry , Enoyl-CoA Hydratase/chemistry , Isomerases/chemistry , Multienzyme Complexes/chemistry , Sequence Homology, Amino Acid , 3-Hydroxyacyl CoA Dehydrogenases/genetics , Amino Acid Sequence , Binding Sites/genetics , Catalysis , Crystallography, X-Ray , Enoyl-CoA Hydratase/genetics , Glutamic Acid/chemistry , Glutamic Acid/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Isomerases/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Multienzyme Complexes/genetics , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peroxisomal Bifunctional Enzyme , Protein Engineering , Stereoisomerism , Templates, Genetic
11.
Structure ; 7(5): 539-48, 1999 May.
Article in English | MEDLINE | ID: mdl-10378273

ABSTRACT

BACKGROUND: Phosphonate compounds are important secondary metabolites in nature and, when linked to macromolecules in eukaryotes, they might play a role in cell signaling. The first obligatory step in the biosynthesis of phosphonates is the formation of a carbon-phosphorus bond by converting phosphoenolpyruvate (PEP) to phosphonopyruvate (P-pyr), a reaction that is catalyzed by PEP mutase. The PEP mutase functions as a tetramer and requires magnesium ions (Mg2+). RESULTS: The crystal structure of PEP mutase from the mollusk Mytilus edulis, bound to the inhibitor Mg(2+)-oxalate, has been determined using multiwavelength anomalous diffraction, exploiting the selenium absorption edge of a selenomethionine-containing protein. The structure has been refined at 1.8 A resolution. PEP mutase adopts a modified alpha/beta barrel fold, in which the eighth alpha helix projects away from the alpha/beta barrel instead of packing against the beta sheet. A tightly associated dimer is formed, such that the two eighth helices are swapped, each packing against the beta sheet of the neighboring molecule. A dimer of dimers further associates into a tetramer. Mg(2+)-oxalate is buried close to the center of the barrel, at the C-terminal ends of the beta strands. CONCLUSIONS: The tetramer observed in the crystal is likely to be physiologically relevant. Because the Mg(2+)-oxalate is inaccessible to solvent, substrate binding and dissociation might be accompanied by conformational changes. A mechanism involving a phosphoenzyme intermediate is proposed, with Asp58 acting as the nucleophilic entity that accepts and delivers the phosphoryl group. The active-site architecture and the chemistry performed by PEP mutase are different from other alpha/beta-barrel proteins that bind pyruvate or PEP, thus the enzyme might represent a new family of alpha/beta-barrel proteins.


Subject(s)
Oxalates/metabolism , Phosphotransferases (Phosphomutases)/chemistry , Animals , Bivalvia/enzymology , Catalysis , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Phosphotransferases (Phosphomutases)/metabolism , Protein Binding , Protein Conformation
12.
Biochemistry ; 38(13): 4198-206, 1999 Mar 30.
Article in English | MEDLINE | ID: mdl-10194336

ABSTRACT

The enzyme 4-chlorobenzoyl-CoA dehalogenase hydrolyzes 4-chlorobenzoyl-CoA (4-CBA-CoA) to 4-hydroxybenzoyl-CoA (4-HBA-CoA). Biochemical and crystallographic studies have identified a critical role for the dehalogenase residue Asp 145 in close proximity to the ligand's 4-hydroxy group in the structure of the product-enzyme complex. In the present study the effects of site selective mutations at Asp 145 on the product complex are explored by Raman spectroscopy. The spectral signatures of the WT-product complex, the large red shift in lambdamax, and the complete reorganization of the benzoyl ring modes in Raman data are absent for the D145E complex. The major spectral perturbations in the WT complex are brought about by strong electron "pull" at the benzoyl carbonyl and electron "push" by the side chain of Asp 145 near the 4-OH group. Acting in concert, these factors polarize the benzoyl's pi-electrons. Since the Raman data show that very strong electron pull occurs at the benzoyl's carbonyl in the D145E complex, it is apparent that the needed electron push near the benzoyl's 4-OH group is missing. Thus, very precise positioning of Asp 145's side chain near the benzoyl's 4-position is needed to bring about the dramatic electron reorganization seen in the WT complex, and this criterion cannot be met by the glutamate side chain with its additional CH2 group. For two other Asp145 mutants D145A and D145S that lack catalytic activity, Raman difference spectroscopic data for product complexes demonstrate the presence of a population of ionized product (i.e., 4-O-) in the active sites. The presence of the ionized phenolate form explains the observation that these complexes have highly red-shifted absorbance maxima with lambdamaxs near 400 nm. For the WT complex only the 4-OH form is seen, ionization being energetically expensive with the presence of the proximal negative charge on the Asp 145 side chain. Semiquantitative estimates of the pKa for the bound product in D145S and D145A indicate that this ionization lies in the pH 6.5-7.0 range. This is approximately 2 pH units below the pKa for the free product. The Raman spectrum of 4-dimethylaminobenzoyl-CoA undergoes major changes upon binding to dehalogenase. The bound form has two features near 1562 and 1529 cm-1 and therefore closely resembles the spectrum of product bound to wild-type enzyme, which underlines the quinonoid nature in these complexes. The use of a newly developed Raman system allowed us to obtain normal (nonresonance) Raman data for the dehalogenase complexes in the 100-300 microM range and heralds an important advance in the application of Raman spectroscopy to dilute solutions of macromolecules.


Subject(s)
Acyl Coenzyme A/metabolism , Electrons , Hydrolases/genetics , Hydrolases/metabolism , Mutagenesis, Site-Directed , Acyl Coenzyme A/chemistry , Alanine/genetics , Aspartic Acid/genetics , Binding Sites/genetics , Glutamic Acid/genetics , Hydrolases/chemistry , Models, Chemical , Protein Binding/genetics , Pseudomonas/enzymology , Serine/genetics , Spectrum Analysis, Raman
13.
Biochemistry ; 38(13): 4207-13, 1999 Mar 30.
Article in English | MEDLINE | ID: mdl-10194337

ABSTRACT

Aspartate 145 plays an essential role in the active site of 4-chlorobenzoyl-CoA dehalogenase, forming a transient covalent link at the 4-position of the benzoate during the conversion of the substrate to 4-hydroxybenzoyl-CoA. Replacement of Asp 145 by residues such as alanine or serine results in total inactivation, and stable complexes can be formed with either substrate or product. The Raman spectroscopic characterization of some of the latter is described in the preceding publication (Dong et al.). The present work investigates complexes formed by D145N dehalogenase and substrate or product. Time-resolved absorption and Raman difference spectroscopic data show that these systems evolve rapidly with time. For the substrate complex, initially the absorption and Raman spectra show the signatures of the substrate bound in the active site of the asparagine 145 form of the enzyme but these signatures are accompanied by those for the ionized product. After several minutes these signatures disappear to be replaced with those closely resembling the un-ionized product in the active site of wild-type dehalogenase. Similarly, for the product complex, the absorption and Raman spectra initially show evidence for ionized product in the active site of D145N, but these are rapidly replaced by signatures closely resembling the un-ionized product bound to wild-type enzyme. It is proposed that product bound to the active site of asparagine 145 dehalogenase catalyzes the deamidation of the asparagine side chain to produce the wild-type aspartate 145. For the complexes involving substrate, the asparagine 145 enzyme population contains a small amount of the WT enzyme, formed by spontaneous deamidation, that produces product. In turn, these product molecules catalyze the deamidation of Asn 145 in the major enzyme population. Thus, conversions of substrate to product and of D145N to D145D dehalogenase go on simultaneously. The spontaneous deamidation of asparagine 145 has been characterized by allowing the enzyme to stand at RT in Hepes buffer at pH 7.5. Under these conditions deamidation occurs with a rate constant of 0.0024 h-1. The rate of product-catalyzed deamidation in Hepes buffer at 22 degrees C was measured by stopped-flow kinetics to be 0.024 s-1, 36000 times faster than the spontaneous process. A feature near 1570 cm-1 could be observed in the early Raman spectra of both substrate and product-enzyme complexes. This band is not associated with either substrate or product and is tentatively assigned to an ester-like species formed by the attack of the product's 4-O- group on the carbonyl of asparagine's side chain and the subsequent release of ammonia. A reaction scheme is proposed, incorporating these observations.


Subject(s)
Amides/metabolism , Asparagine/genetics , Aspartic Acid/genetics , Hydrolases/genetics , Hydrolases/metabolism , Asparagine/metabolism , Aspartic Acid/metabolism , Binding Sites/genetics , Catalysis , Models, Chemical , Mutagenesis, Site-Directed , Pseudomonas/enzymology , Spectrum Analysis, Raman , Substrate Specificity/genetics , Time Factors
14.
J Biol Chem ; 273(50): 33572-9, 1998 Dec 11.
Article in English | MEDLINE | ID: mdl-9837940

ABSTRACT

The soil-dwelling microbe, Pseudomonas sp. strain CBS-3, has attracted recent attention due to its ability to survive on 4-chlorobenzoate as its sole carbon source. The biochemical pathway by which this organism converts 4-chlorobenzoate to 4-hydroxybenzoate consists of three enzymes: 4-chlorobenzoyl-CoA ligase, 4-chlorobenzoyl-CoA dehalogenase, and 4-hydroxybenzoyl-CoA thioesterase. Here we describe the three-dimensional structure of the thioesterase determined to 2.0-A resolution. Each subunit of the homotetramer is characterized by a five-stranded anti-parallel beta-sheet and three major alpha-helices. While previous amino acid sequence analyses failed to reveal any similarity between this thioesterase and other known proteins, the results from this study clearly demonstrate that the molecular architecture of 4-hydroxybenzoyl-CoA thioesterase is topologically equivalent to that observed for beta-hydroxydecanoyl thiol ester dehydrase from Escherichia coli. On the basis of the structural similarity between these two enzymes, the active site of the thioesterase has been identified and a catalytic mechanism proposed.


Subject(s)
Pseudomonas/enzymology , Thiolester Hydrolases/chemistry , Amino Acid Sequence , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , Thiolester Hydrolases/metabolism
15.
Biochemistry ; 37(39): 13463-74, 1998 Sep 29.
Article in English | MEDLINE | ID: mdl-9753432

ABSTRACT

Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, Pi, and pyruvate with AMP, PPi, and PEP in three partial reactions: (1) E + ATP --> E.ATP --> E-PP.AMP, (2) E-PP.AMP + Pi --> E-PP.AMP.Pi --> E-P.AMP.PPi, and (3) E-P + pyruvate --> E-P.pyruvate --> E.PEP. The Clostridium symbiosum PPDK structure consists of N-terminal, central, and C-terminal domains. The N-terminal and central domains catalyze partial reactions 1 and 2 whereas the C-terminal and central domains catalyze partial reaction 3. The goal of the present work is to determine where on the N-terminal domain catalysis of partial reactions 1 and 2 occurs and, in particular, where the Pi binding site is located. Computer modeling studies implicated Arg337 as a key residue for Pi binding. This role was tested by site-directed mutagenesis. The R337A PPDK was shown to be impaired in catalysis of the forward (kcat 300-fold lower) and reverse (kcat 30-fold lower) full reactions. Time courses for the single turnover reactions were measured to show that catalysis of partial reaction 1 is 5-fold slower in the mutant, catalysis of the second partial reaction is 140-fold slower in the mutant, and catalysis of the third partial reaction is unaffected. With the exception of the mutation site, the crystal structure of the R337A PPDK closely resembles the structure of the wild-type protein. Thus, the altered kinetic properties observed for this mutant are attributed solely to the elimination of the interaction between substrate and the guanidinium group of the Arg337 side chain. On the basis of these findings we propose that the Pi binding site is located within the crevice of the PPDK N-terminal domain, at a site that is flanked by the ATP beta-P and the Mg2+ cofactor.


Subject(s)
Clostridium/enzymology , Phosphates/metabolism , Pyruvate, Orthophosphate Dikinase/metabolism , Alanine/genetics , Amino Acid Substitution/genetics , Arginine/genetics , Binding Sites/genetics , Catalysis , Crystallization , Crystallography, X-Ray , Kinetics , Lysine/genetics , Models, Molecular , Mutagenesis, Site-Directed , Phosphoenolpyruvate/metabolism , Pyruvate, Orthophosphate Dikinase/chemistry , Pyruvate, Orthophosphate Dikinase/genetics , Pyruvate, Orthophosphate Dikinase/isolation & purification
16.
Biochemistry ; 37(26): 9305-15, 1998 Jun 30.
Article in English | MEDLINE | ID: mdl-9649311

ABSTRACT

Phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the hydrolysis of phosphonoacetaldehyde to acetaldehyde and inorganic phosphate. In this study, the genes encoding phosphonatase in Bacillus cereus and in Salmonella typhimurium were cloned for high-level expression in Escherichia coli. The kinetic properties of the purified, recombinant phosphonatases were determined. The Schiff base mechanism known to operate in the B. cereus enzyme was verified for the S. typhimurium enzyme by phosphonoacetaldehyde-sodium borohydride-induced inactivation and by site-directed mutagenesis of the catalytic lysine 53. The protein sequence inferred from the B. cereus phosphonatase gene was determined, and this sequence was used along with that from the S. typhimurium phosphonatase gene sequence to search the primary sequence databases for possible structural homologues. We found that phosphonatase belongs to a novel family of hydrolases which appear to use a highly conserved active site aspartate residue in covalent catalysis. On the basis of this finding and the known stereochemical course of phosphonatase-catalyzed hydrolysis at phosphorus (retention), we propose a mechanism which involves Schiff base formation with lysine 53 followed by phosphoryl transfer to aspartate (at position 11 in the S. typhimurium enzyme and position 12 in the B. cereusphosphonatase) and last hydrolysis at the imine C(1) and acyl phosphate phosphorus.


Subject(s)
Carbon/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Mutagenesis, Site-Directed , Phosphorus/metabolism , Sequence Analysis, DNA , Amino Acid Sequence , Bacillus cereus/enzymology , Bacillus cereus/genetics , Binding Sites , Catalysis , Cloning, Molecular , Conserved Sequence/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Hydrolases/chemistry , Hydrolases/isolation & purification , Hydrolysis , Lysine/genetics , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Multigene Family , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Schiff Bases/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
17.
J Biol Chem ; 273(8): 4443-8, 1998 Feb 20.
Article in English | MEDLINE | ID: mdl-9468496

ABSTRACT

The enzyme phosphoenolpyruvate mutase was purified to homogeneity from the mollusk Mytilus edulis. The subunit size of the native homotetramer was determined to be 34,000 Da. The steady-state kinetic constants for catalysis of the conversion of phosphonopyruvate to phosphoenolpyruvate at pH 7.5 and 25 degrees C were measured at kcat = 34 s-1, phosphonopyruvate Km = 3 microM, and Mg2+ Km = 4 microM. The enzyme displayed a broad specificity for divalent metal ion activation; Co2+, Mn2+, Zn2+, and Ni2+ are activators, whereas Ca2+ is not. Analysis of the pH dependence of the Mg2+-activated mutase-catalyzed reaction of phosphonopyruvate revealed one residue that must be protonated (apparent pKa = 8.3) and a second residue that must be unprotonated (apparent pKa = 7.7) for maximal catalytic activity.


Subject(s)
Bivalvia/enzymology , Carbon/metabolism , Phosphorus/metabolism , Phosphotransferases (Phosphomutases)/metabolism , Amino Acid Sequence , Animals , Catalysis , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Phosphotransferases (Phosphomutases)/isolation & purification , Substrate Specificity
18.
Biochemistry ; 36(33): 10192-9, 1997 Aug 19.
Article in English | MEDLINE | ID: mdl-9254617

ABSTRACT

The enzyme 4-chlorobenzoate-CoA dehalogenase catalyzes the hydrolysis of 4-chlorobenzoate-CoA (4-CBA-CoA) to 4-hydroxybenzoyl-CoA (4-HBA-CoA). In order to facilitate electrophilic catalysis, the dehalogenase utilizes a strong polarizing interaction between the active site residues and the benzoyl portion of the substrate [Taylor, K. L., et al. (1995) Biochemistry 34, 13881]. As a result of this interaction, the normal modes of the benzoyl moiety of the bound 4-HBA-CoA undergo a drastic rearrangement as shown by Raman spectroscopy. Here, we present Raman difference spectroscopic data on the product-enzyme complex where the product's benzoyl carbonyl is labeled with 18O (C=18O) or 13C (13C=O) or where the 4-OH group is labeled with 18O. The data demonstrate that the carbonyl group participates in the most intense normal modes occurring in the Raman spectrum in the 1520-1560 cm-1 region. The substrate analog 4-methylbenzoate-CoA (4-MeBA-CoA) has also been characterized by Raman difference spectroscopy in its free form and bound to the dehalogenase. Upon binding, the 4-MeBA-CoA shows evidence of polarization within the delocalized pi-electrons, but to a lesser extent compared to that seen for the product. The use of 4-MeBA-CoA labeled with 18O at the carbonyl enables us to estimate the degree of electron polarization within the C=O group of the bound 4-MeBA-CoA. The C=O stretching frequency occurs near 1663 cm-1 in non-hydrogen bonding solvents such as CCl4, near 1650 cm-1 in aqueous solution, and near 1610 cm-1 in the active site of dehalogenase. From model studies, we can estimate that in the active site the carbonyl group behaves as though it is being polarized by hydrogen bonds approximately 57 kJ mol-1 in strength. Major contributions to this polarization come from hydrogen bonds from the peptide NHs of Gly114 and Phe64. However, an additional contribution, which may account for up to half of the observed shift in nuC=O, originates in the electrostatic field due to the alpha-helix dipole from residues 121-114. The helix which terminates at Gly114, near the C=O group of the bound benzoyl, provides a dipolar electrostatic component which contributes to the polarization of the C=O bond and to the polarization of the entire benzoyl moiety. The effect of both the helix dipole and the hydrogen bonds on the C=O is a "pull" of electrons onto the carbonyl oxygen, which, in turn, polarizes the electron distribution within the benzoyl pi-electron system. The ability of these two factors to polarize the electrons within the benzoyl moiety is increased by the environment about the benzoyl ring; it is surrounded by hydrophobic residues which provide a low-dielectric constant microenvironment. Electron polarization promotes catalysis by reducing electron density at the C4 position of the benzoyl ring, thereby assisting attack by the side chain of Asp145. An FTIR study on the model compound 4-methylbenzoyl S-ethyl thioester, binding to a number of hydrogen bonding donors in CCl4, is described and is used to relate the observed shift of the C=O stretching mode of 4-MeBA-CoA in the active site to the hydrogen bonding strength value. Since the shift of the C=O frequency upon binding is due to hydrogen bonding and helix dipole effects, we refer to this bonding strength as the effective hydrogen bonding strength.


Subject(s)
Escherichia coli/enzymology , Hydrolases/metabolism , Binding Sites , Catalysis , Gas Chromatography-Mass Spectrometry , Hydrolases/chemistry , Oxygen Isotopes , Spectrum Analysis, Raman
19.
Biochemistry ; 36(6): 1349-61, 1997 Feb 11.
Article in English | MEDLINE | ID: mdl-9063883

ABSTRACT

4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolysis of 4-CBA-CoA to 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA), using the carboxylate side chain of aspartate 145 to displace the chloride from C(4) of the benzoyl ring. Previous UV-visible, Raman, and 13C NMR studies of enzyme-bound substrate analog or product ligand indicated that the environment of the enzyme active site induces a significant reorganization of the benzoyl ring pi-electrons. This observation was interpreted as evidence for electrophilic catalysis [viz. active-site-induced polarization of electron density away from the ring C(4)] [Taylor, K. L., Liu, R.-Q., Liang, P.-H., Price, J., Dunaway-Mariano, D., Tonge, P. J., Clarkson, J., & Carey, P. R. (1995) Biochemistry 34, 13881]. The recent crystal structure of the dehalogenase-4-HBA-CoA complex reveals two hydrogen bonds contributed to the benzoyl C=O by the backbone amide protons of Gly114 and Phe64 and a possible dipolar interaction with the positive pole of the 114-121 alpha-helix. Residues closely surrounding the benzoyl ring include W137, D145, W89, F64, F82, and H90. In the present study, the mutants D145A, H90Q, W137F, W89F, W89Y, F64L, F82L, and G114A were prepared to examine the effect of amino acid substitution on catalysis and on perturbation of the UV-visible spectral properties of the substrate benzoyl ring. Substitution of the two catalytic residues D145 and H90 inhibited catalysis but not ligand binding or the induction of the red shift in the benzoyl ring absorption. These two residues do not appear to contribute to substrate benzoyl ring binding or polarization. The F64L, F82L, W89F, and W137F mutants retained substantial catalytic activity and the ability to induce the red shift. The W89Y mutant, on the other hand, is inhibited in catalysis and ligand binding, suggesting that hydrophobicity more than packing may be critical for the benzoyl ring binding/activation. The G114A mutant was shown to be strongly inhibited in both substrate binding and activation, indicating that H-bonding and/or interaction with the dipole of the 114-121 alpha-helix may be crucial.


Subject(s)
Hydrolases/metabolism , Acyl Coenzyme A/metabolism , Binding Sites , Enzyme Activation , Hydrolases/genetics , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Mutagenesis, Site-Directed , Spectrophotometry, Ultraviolet
20.
Biochemistry ; 36(50): 15650-9, 1997 Dec 16.
Article in English | MEDLINE | ID: mdl-9398293

ABSTRACT

4-Chlorobenzoate:coenzyme A (4-CBA:CoA) ligase catalyzes 4-chlorobenzoyl-coenzyme A formation in a two-step reaction consisting of the adenylation of 4-chlorobenzoate with adenosine 5'-triphosphate followed by acyl transfer from the 4-chlorobenzoyl adenosine 5'-monophosphate diester intermediate to coenzyme A. In this study, two core motifs present in the Pseudomonas sp. strain CBS3 4-CBA:CoA ligase (motif I, 161T-S-G-T-T-G-L-P-K-G170, and motif II, 302Y-G-T-T-E306) and conserved among the sequences representing the acyl-adenylate/thioester-forming enzyme family (to which the ligase belongs) were tested for their possible role in substrate binding and/or catalysis. The site-directed mutants G163I, G166I, P168A, K169M, and E306Q were prepared and then subjected to steady-state and transient kinetic studies. The results, which indicate reduced catalysis of the adenylation of 4-chlorobenzoate in the mutant enzymes, are interpreted within the context of the three-dimensional structure of the acyl-adenylate/thioester-forming enzyme family member, firefly luciferase.


Subject(s)
Coenzyme A Ligases/chemistry , Pseudomonas/enzymology , Adenosine Triphosphate/metabolism , Catalysis , Chlorobenzoates/metabolism , Chromatography, High Pressure Liquid , Coenzyme A/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Conserved Sequence , Kinetics , Luciferases/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL