Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Am Chem Soc ; 139(42): 15222-15231, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28984455

ABSTRACT

Mechanistic studies involving synergistic experiment and theory were performed on the perfectly alternating copolymerization of 1-butene oxide and carbic anhydride using a (salph)AlCl/[PPN]Cl catalytic pair. These studies showed a first-order dependence of the polymerization rate on the epoxide, a zero-order dependence on the cyclic anhydride, and a first-order dependence on the catalyst only if the two members of the catalytic pair are treated as a single unit. Studies of model complexes showed that a mixed alkoxide/carboxylate aluminum intermediate preferentially opens cyclic anhydride over epoxide. In addition, ring-opening of epoxide by an intermediate comprising multiple carboxylates was found to be rate-determining. On the basis of the experimental results and analysis by DFT calculations, a mechanism involving two catalytic cycles is proposed wherein the alternating copolymerization proceeds via intermediates that have carboxylate ligation in common, and a secondary cycle involving a bis-alkoxide species is avoided, thus explaining the lack of side reactions until the polymerization is complete.

2.
ACS Catal ; 6(2): 1215-1224, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26900488

ABSTRACT

Aluminum alkoxide complexes (2) of salen ligands with a three-carbon linker and para substituents having variable electron-withdrawing capabilities (X = NO2, Br, OMe) were prepared, and the kinetics of their ring-opening polymerization (ROP) of ε-caprolactone (CL) were investigated as a function of temperature, with the aim of drawing comparisons to similar systems with two-carbon linkers investigated previously (1). While 1 and 2 exhibit saturation kinetics and similar dependences of their ROP rates on substituents X (invariant Keq, similar Hammett ρ = +1.4(1) and 1.2(1) for k2, respectively), ROP by 2 was significantly faster than for 1. Theoretical calculations confirm that, while the reactant structures differ, the transition state geometries are quite similar, and by analyzing the energetics of the involved distortions accompanying the structural changes, a significant contribution to the basis for the rate differences was identified. Using this knowledge, a simplified computational method for evaluating ligand structural influences on cyclic ester ROP rates is proposed that may have utility for future catalyst design.

3.
J Am Chem Soc ; 136(42): 14903-11, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25310874

ABSTRACT

A set of densely substituted, α-functionalized cyclopentanones can be generated by a two-component, domino reaction sequence entailing the Nazarov electrocyclization of divinyl ketones and nucleophilic addition of the resulting 2-oxidocyclopentenyl cations by selected trapping modalities. Bypassing the typical eliminative termination, Nazarov oxyallyl species can react with carbon π-nucleophiles through cycloadditions (or formal cycloadditions), in which bridged bicyclic systems are established, or nucleophilic trappings whereby one terminal carbon of the oxyallyl intermediate is subjected to carbon-carbon bond formation. A detailed investigation of reaction parameters to explicitly control the course of the "interrupted" Nazarov reactions is described. This methodology allows for facile installation of α-quaternary centers bearing allyl, alkynyl, and heteroaryl groups in an umpolung fashion. In addition, the trapping event of a Nazarov intermediate with furan was studied by DFT computations, in conjunction with experimental data, offering a rationale for the observed reaction pattern and diastereoselectivity.

4.
J Org Chem ; 76(19): 7720-9, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21819036

ABSTRACT

This study examines the chemoselectivity of alkoxy radical cyclizations onto silyl enol ethers compared to competing cyclizations, 1,5-hydrogen atom transfers (1,5-HATs), and ß-fragmentations. Cyclization onto silyl enol ethers in a 5-exo mode is greatly preferred over cyclization onto a terminal alkene. The selectivity decreases when any alkyl substitution is present on the competing alkene radical acceptor. Alkoxy radical 5-exo cyclizations displayed excellent chemoselectivity over competing ß-fragmentations. Alkoxy radical 5-exo cyclizations onto silyl enol ether also outcompeted 1,5-HATs, even for activated benzylic hydrogen atoms. In tetrahydropyran synthesis, where 1,5-HAT has plagued alkoxy radical cyclization methodologies, 6-exo cyclizations were the dominant mode of reactivity. ß-Fragmentation still remains a challenge for tetrahydropyran synthesis when an aryl group is present in the ß position.

5.
J Am Chem Soc ; 131(51): 18246-7, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-19994887

ABSTRACT

A broadly applicable group-4-based precatalyst for the hydroamination of primary and secondary amines was developed. Screening experiments involving a series of amide and urea proligands led to the discovery of a tethered bis(ureate) zirconium complex with unprecedented reactivity in the intermolecular hydroamination of alkynes and the intramolecular hydroamination of alkenes. This catalyst system is effective with primary and secondary amines, 1,2-disubstituted alkenes, and heteroatom-containing functional groups, including ethers, silanes, amines, and heteroaromatics. The gem-disubstituent effect is not required for cyclization. The catalyst is generally regioselective for the anti-Markovnikov product of intermolecular alkyne hydroamination, and chemoselective for hydroamination over alpha-alkylation when forming 6- and 7-membered rings from aminoalkenes.


Subject(s)
Amines/chemistry , Alkenes/chemistry , Alkynes/chemistry , Amination , Catalysis , Cyclization , Ligands , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...