Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2311157, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881263

ABSTRACT

This study demonstrates the enhanced performance in high-voltage sodium full cells using a novel electrolyte composition featuring a highly fluorinated borate ester anion (1 M Na[B(hfip)4].3DME) in a binary carbonate mixture (EC:EMC), compared to a conventional electrolyte (1 M Na[PF6] EC:EMC). The prolonged cycling performance of sodium metal battery employing high voltage cathodes (NVPF@C@CNT and NFMO) is attributed to uniform and dense sodium deposition along with the formation of fluorine and boron-rich solid electrolyte interphase (SEI) on the sodium metal anode. Simultaneously, a robust cathode electrolyte interphase (CEI) is formed on the cathode side due to the improved electrochemical stability window and superior aluminum passivation of the novel electrolyte. The CEIs on high-voltage cathodes are discovered to be abundant in C-F, B-O, and B-F components, which contributes to long-term cycling stability by effectively suppressing undesirable side reactions and mitigating electrolyte decomposition. The participation of DME in the primary solvation shell coupled with the comparatively weaker interaction between Na+ and [B(hfip)4]- in the secondary solvation shell, provides additional confirmation of labile desolvation. This, in turn, supports the active participation of the anion in the formation of fluorine and boron-rich interphases on both the anode and cathode.

2.
Phys Chem Chem Phys ; 25(40): 27718-27730, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37814518

ABSTRACT

High-voltage sodium batteries are an appealing solution for economical energy storage applications. Currently available electrolyte materials have seen limited success in such applications therefore the identification of high-performing and safer alternatives is urgently required. Herein we synthesise six novel ionic liquids derived from two fluoroborate anions which have shown great promise in recent battery literature. This study reports for the first time the electrochemically applicable room-temperature ionic liquid (RTIL) N-ethyl-N,N,N-tris(2-(2-methoxyethoxy)ethyl)ammonium (tetrakis)hexafluoroisopropoxy borate ([N2(2O2O1)3][B(hfip)4]). The RTIL shows promising physical properties with a very low glass-transition at -73 °C and low viscosity. The RTIL exhibits an electrochemical window of 5.3 V on a glassy carbon substrate which enables high stability electrochemical cycling of sodium in a 3-electrode system. Of particular note is the strong passivation behaviour of [N2(2O2O1)3][B(hfip)4] on aluminium current-collector foil at potentials as high as 7 V (vs. Na+/Na) which is further improved with the addition of 50 mol% Na[FSI]. This study shows [B(hfip)4]- ionic liquids have the desired physical and electrochemical properties for high-voltage sodium electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...