Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sports (Basel) ; 5(3)2017 Sep 19.
Article in English | MEDLINE | ID: mdl-29910430

ABSTRACT

The aim of this study was to compare the actual deadlift one repetition maximum (1RM) and the deadlift 1RM predicted from individualised load-velocity profiles. Twelve moderately resistance-trained men participated in three deadlift sessions. During the first, 1RM was assessed; during the second, load-velocity profiles were recorded with six loads (65% to 90% 1RM) using a linear position transducer recording at 1000 Hz; and during the third, minimal velocity thresholds (MVT) were recorded from the velocity of the last repetition during sets to volitional fatigue with 70% and 80% 1RM with a linear position transducer recording at 1000 Hz. Regression was then used to generate individualised load-velocity profiles and the MVT was used as a cut-off value from which to predict deadlift 1RM. In general, velocity reliability was poor to moderate. More importantly, predicted deadlift 1RMs were significantly and meaningfully less than actual deadlift 1RMs (p < 0.05, d = 1.03⁻1.75). The main practical application that should be taken from the results of this study is that individualized load-velocity profiles should not be used to predict deadlift 1RM. Practitioners should not use this method in combination with the application of MVT obtained from the last repetition of sets to volitional fatigue.

2.
Sports (Basel) ; 5(4)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29910442

ABSTRACT

This study compared typical mechanical variables of interest obtained directly from barbell motion during deadlift performance with a conventional (CBD) and a hexagonal barbell (HBD). Eleven men, proficient with both deadlift variations, volunteered to participate in the study (age: 20.3 ± 0.6 years; height: 175.5 ± 8.5 m; mass: 88.7 ± 19.0 kg; CBD 1RM: 183 ± 22 kg; HBD 1RM: 194 ± 20 kg). During the first session, CBD and HBD 1RM was assessed; during the second session, they performed 3 sets of 1 CBD repetition with 90% 1RM; and in session three, they repeated this process with the HBD. Barbell displacement was recorded at 1000 Hz and mechanical parameters derived from this. Significantly heavier loads were lifted during HBD (6%, p = 0.003). There were no significant differences between barbell displacement (p = 0.216). However, HBD was performed significantly faster (15%, p = 0.012), HBD load was accelerated for significantly longer (36%, p = 0.004), and significantly larger mean forces underpinned this (6%, p < 0.001), with more work having been performed (7%, p < 0.001) at greater power outputs (28%, p < 0.001). The results of this study showed that heavier HBD loads can be lifted through the same range of motion faster, and that this load is accelerated for significantly longer. The strategies used to achieve these differences could have a significant effect on training outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...