Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Sci Immunol ; 9(95): eade2094, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787961

ABSTRACT

Immunotherapy advances have been hindered by difficulties in tracking the behaviors of lymphocytes after antigen signaling. Here, we assessed the behavior of T cells active within tumors through the development of the antigen receptor signaling reporter (AgRSR) mouse, fate-mapping lymphocytes responding to antigens at specific times and locations. Contrary to reports describing the ready egress of T cells out of the tumor, we find that intratumoral antigen signaling traps CD8+ T cells in the tumor. These clonal populations expand and become increasingly exhausted over time. By contrast, antigen-signaled regulatory T cell (Treg) clonal populations readily recirculate out of the tumor. Consequently, intratumoral antigen signaling acts as a gatekeeper to compartmentalize CD8+ T cell responses, even within the same clonotype, thus enabling exhausted T cells to remain confined to a specific tumor tissue site.


Subject(s)
CD8-Positive T-Lymphocytes , Signal Transduction , Animals , CD8-Positive T-Lymphocytes/immunology , Mice , Signal Transduction/immunology , Mice, Inbred C57BL , Mice, Transgenic , Antigens, Neoplasm/immunology , Neoplasms/immunology
2.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37553182

ABSTRACT

BACKGROUND: The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS: Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS: We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS: The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Adenosine , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Immunotherapy/methods , Tumor Microenvironment
3.
Food Res Int ; 164: 112311, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36737905

ABSTRACT

This work reports the impact of locust bean gum (LBG) in the continuous phase of plant-based proteins, i.e. quinoa protein (QPI) and pea protein isolates (PPI). Experimental measurements such as confocal microscopy, rheological analysis and water mobility via nuclear magnetic resonance (nmr) spin-spin relaxation time (T2) were carried out. The influence of LBG on the rheological properties of QPI and PPI is consistent with an exchange-based nmr interpretation of T2 for biopolymer and water. Addition of LBG increased the viscoelastic properties (storage and loss modulus) and shear viscosities of the mixtures. LBG interacted with both plant proteins, resulting in the formation of more dense protein networks and protein coacervates. A stronger interaction between the PPI and LBG was observed, resulting in higher shear viscosities with lower water mobility as compared to QPI:LBG formulations. Results indicated that the interaction between the protein and polysaccharide played a significant role in the microstructure, its rheological properties and consequently water mobility.


Subject(s)
Chenopodium quinoa , Pisum sativum , Plant Proteins , Water/chemistry
4.
Food Funct ; 13(18): 9355-9371, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35972507

ABSTRACT

It is important to understand variability in consumer chewing behavior for designing food products that deliver desired functionalities for target consumer segments. In this study, we selected 29 participants, representing the large range of chewing variation we had observed in 142 healthy young adults, and investigated the influence of chewing behavior on gastrointestinal digestion and colonic fermentation, using in vitro models and brown rice as a model food. Chewing behavior measured by video observations and chewing outcome differed widely between participants, resulting in large differences in the digestibility of carbohydrates. Inter-individual differences in chewing behavior and chewing outcome also significantly affected in vitro patterns of microbial composition and the production of organic acid metabolites, resulting from colonic fermentation, which is increasingly recognized to be important for human health. These digestion/fermentation outcomes were largely related with the chewing time per mouthful, proportion of bolus particles bigger than 2 mm and amount of saliva added to the bolus during chewing. No significant relationships were found with other chewing trajectory and oral physiological measures. These results suggest that modification of chewing may be an effective strategy to control blood glucose levels and to shape gut microbiota and their metabolites, without altering diets, and that further in vivo studies are warranted to confirm these in vitro findings.


Subject(s)
Digestion , Mastication , Blood Glucose , Fermentation , Food , Humans , Mastication/physiology , Young Adult
5.
PLoS One ; 17(5): e0267567, 2022.
Article in English | MEDLINE | ID: mdl-35522680

ABSTRACT

The benefits of lowering blood pressure (BP) are well established for the prevention of cardiovascular disease. While there are a number of pharmaceuticals available for lowering BP, there is considerable interest in using dietary modifications, lifestyle and behaviour changes as alternative strategies. Kukoamines, caffeic acid derivatives of polyamines present in solanaceous plants, have been reported to reduce BP. We investigated the effect of orally administered synthetic kukoamine A on BP in the Spontaneously Hypertensive Rat (SHR) laboratory animal model of hypertension. Prior to the hypertension study, we determined the safety of the synthetic kukoamine A in a single oral dose (5 or 10 mg kg-1 bodyweight) 14-day observational study in mice. No negative effects of the oral administration of kukoamine A were observed. We subsequently investigated the effect of daily oral doses of kukoamine A (0, 5, 10 mg kg-1 bodyweight) for 35 days using the SHR rat model of hypertension. The normotensive control Wistar Kyoto (WKY) strain was used to provide a baseline for normal BP in rats. We observed no effect of orally administered synthetic kukoamine A on arterial hypertension in this laboratory animal model of hypertension.


Subject(s)
Hypertension , Administration, Oral , Animals , Blood Pressure/physiology , Hypertension/drug therapy , Mice , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Spermine/analogs & derivatives
6.
Nanoscale ; 14(17): 6656-6669, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35438701

ABSTRACT

Nanocarriers have emerged as one of the most promising approaches for drug delivery. Although several nanomaterials have been approved for clinical use, the translation from lab to clinic remains challenging. However, by implementing rational design strategies and using relevant models for their validation, these challenges are being addressed. This work describes the design of novel immunocompatible polymer nanocarriers made of melanin-mimetic polydopamine and Pluronic F127 units. The nanocarrier preparation was conducted under mild conditions, using a highly reproducible method that was tuned to provide a range of particle sizes (<100 nm) without changing the composition of the carrier. A set of in vitro studies were conducted to provide a comprehensive assessment of the effect of carrier size (40, 60 and 100 nm) on immunocompatibility, viability and uptake into different pancreatic cancer cells varying in morphological and phenotypic characteristics. Pancreatic cancer is characterised by poor treatment efficacy and no improvement in patient survival in the last 40 years due to the complex biology of the solid tumour. High intra- and inter-tumoral heterogeneity and a dense tumour microenvironment limit diffusion and therapeutic response. The Pluronic-polydopamine nanocarriers were employed for the delivery of irinotecan active metabolite SN38, which is used in the treatment of pancreatic cancer. Increased antiproliferative effect was observed in all tested cell lines after administration of the drug encapsulated within the carrier, indicating the system's potential as a therapeutic agent for this hard-to-treat cancer.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Drug Carriers/metabolism , Drug Delivery Systems , Histocompatibility , Humans , Pancreatic Neoplasms/drug therapy , Polymers , Tumor Microenvironment , Pancreatic Neoplasms
7.
Cancers (Basel) ; 14(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35205709

ABSTRACT

An elevated neutrophil-lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy.

8.
Anal Chem ; 94(3): 1795-1803, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35005896

ABSTRACT

Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Mice , Multimodal Imaging , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , Gemcitabine
9.
Microorganisms ; 9(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34683410

ABSTRACT

We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants' growth needs and support the maturation of the infant gut microbiome.

10.
Mol Cancer Ther ; 20(10): 1926-1940, 2021 10.
Article in English | MEDLINE | ID: mdl-34376576

ABSTRACT

The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFß antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFß inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFß-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFß inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFß inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFß inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFß inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/immunology , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/immunology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Stromal Cells/immunology , Tumor Microenvironment , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Combined Modality Therapy , Deoxycytidine/pharmacology , Humans , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Gemcitabine
11.
EBioMedicine ; 68: 103396, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34049239

ABSTRACT

BACKGROUND: Chemotherapy and targeted agent anti-cancer efficacy is largely dependent on the proliferative state of tumours, as exemplified by agents that target DNA synthesis/replication or mitosis. As a result, cell cycle specificities of a number of cancer drugs are well known. However, they are yet to be described in a quantifiable manner. METHODS: A scalable cell synchronisation protocol used to screen a library of 235 anti-cancer compounds exposed over six hours in G1 or S/G2 accumulated AsPC-1 cells to generate a cell cycle specificity (CCS) score. FINDINGS: The synchronisation method was associated with reduced method-related cytotoxicity compared to nocodazole, delivering sufficient cell cycle purity and cell numbers to run high-throughput drug library screens. Compounds were identified with G1 and S/G2-associated specificities that, overall, functionally matched with a compound's target/mechanism of action. This annotation was used to describe a synergistic schedule using the CDK4/6 inhibitor, palbociclib, prior to gemcitabine/AZD6738 as well as describe the correlation between the CCS score and published synergistic/antagonistic drug schedules. INTERPRETATION: This is the first highly quantitative description of cell cycle-dependent drug sensitivities that utilised a tractable and tolerated method with potential uses outside the present study. Drug treatments such as those shown to be G1 or S/G2 associated may benefit from scheduling considerations such as after CDK4/6 inhibitors and being first in drug sequences respectively. FUNDING: Cancer Research UK (CRUK) Institute core grants C14303/A17197 and C9545/A29580. The Li Ka Shing Centre where this work was performed was generously funded by CK Hutchison Holdings Limited, the University of Cambridge, CRUK, The Atlantic Philanthropies and others.


Subject(s)
Deoxycytidine/analogs & derivatives , Neoplasms/metabolism , Nocodazole/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Tubulin Modulators/pharmacology , Cell Culture Techniques , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Deoxycytidine/pharmacology , Drug Screening Assays, Antitumor , Drug Synergism , HeLa Cells , High-Throughput Screening Assays , Humans , MCF-7 Cells , Neoplasms/drug therapy , Time Factors , Gemcitabine
12.
Foods ; 10(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918607

ABSTRACT

Consumption of polyphenols and dietary fiber as part of a normal diet is beneficial to human health. In this study, we examined whether different amounts of dietary soluble fiber (pectin) affect the absorption and metabolism of polyphenols from blackcurrant and green tea in rats. After 28 days, the rats fed blackcurrant and green tea with pectin (4 or 8%) had significantly lower body weight gain and food intake compared to the rats fed a control diet. Rats fed a blackcurrant and green tea diet with 8% pectin had significantly higher fecal nitrogen output and lower protein digestibility. No polyphenols were observed in the urine, feces and plasma of rats fed the control diet. Parent catechins and flavonols were absent in urine obtained from all diet groups. Gallocatechin glucuronide was only observed in the plasma of rats fed the blackcurrant and green tea diet without pectin. Meanwhile, epicatechin and catechin gallate were present in the feces of rats fed a blackcurrant and green tea diet with and without 4% pectin. Pectin (4 or 8%) added to the blackcurrant and green tea diet increased the plasma antioxidant capacity in rats. Inclusion of pectin in the diet altered the host absorption and metabolism of polyphenols from blackcurrant and green tea.

13.
Sci Rep ; 11(1): 9292, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927231

ABSTRACT

Eight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants' faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.


Subject(s)
Bacteria/metabolism , Dietary Fiber/analysis , Fermentation , Gastrointestinal Microbiome , Sugars/analysis , Avena/chemistry , Bacteria/classification , Bacteria/enzymology , Carboxylic Acids/metabolism , Dietary Fiber/metabolism , Feces/microbiology , Fruit/chemistry , Glycoside Hydrolases/metabolism , Humans , Infant , Sugars/metabolism , Vegetables/chemistry , Weaning
15.
Food Funct ; 12(7): 3104-3119, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33725036

ABSTRACT

Antibiotics are effective treatments for bacterial infections, however, their oral administration can have unintended consequences and may alter the gut microbiota composition. In this study, we examined the influence of antibiotics on the induction of gut dysbiosis and then evaluated the potential of cow and goat milk to restore the microbiota composition and metabolism in newly weaned rats. In the first study (gut dysbiosis model), rats were treated with amoxicillin, a mixture of antibiotics (ampicillin, gentamicin and metronidazole) or no antibiotics (control). Antibiotics reduced the rat body weights, food intakes and faecal outputs compared to the control group. Gut length was significantly decreased after the antibiotic intake. The bacterial populations (Bifidobacterium spp., Lactobacillus spp. and total bacteria) and short-chain fatty acids (SCFAs; acetic, butyric and propionic) concentrations in rat caecum, colon and faeces were significantly altered by the antibiotic treatments. In the second study, we examined the effects of cow and goat milk in restoring bacterial populations and metabolism in rats with gut dysbiosis induced by amoxicillin. Goat milk significantly increased the numbers of Bifidobacterium spp. and Lactobacillus spp. and decreased the numbers of Clostridium perfringens in the caecum and colon of rats treated with amoxicillin. Whereas, rats fed cow milk had higher Lactobacillus spp. and lower C. perfringens in the gut. Caecal and colonic SCFAs (acetic, butyric and propionic) concentrations differed significantly between rats fed cow and goat milk diets. Overall, goat and cow milk varied in their effects on the immature gut following antibiotic-induced dysbiosis in a rat model.


Subject(s)
Dysbiosis/diet therapy , Milk/microbiology , Amoxicillin , Animals , Cattle , Disease Models, Animal , Dysbiosis/chemically induced , Fermentation , Gastrointestinal Microbiome/drug effects , Goats , Male , Rats , Rats, Sprague-Dawley
17.
Microorganisms ; 8(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066564

ABSTRACT

Whole kiwifruit ('Hayward' and 'Zesy002') were examined for their bioaminergic potential after being subjected to in vitro gastrointestinal digestion and colonic fermentation. Controls included the prebiotic inulin and water, a carbohydrate-free vehicle. The dopamine precursor l-dihydroxyphenylalanine (L-DOPA) and the serotonin precursor 5-hydroxytryptophan were increased in the kiwifruit gastrointestinal digesta ('Hayward' > 'Zesy002') in comparison to the water digesta. Fermentation of the digesta with human fecal bacteria for 18 h modulated the concentrations of bioamine metabolites. The most notable were the significant increases in L-DOPA ('Zesy002' > 'Hayward') and γ-aminobutyric acid (GABA) ('Hayward' > 'Zesy002'). Kiwifruit increased Bifidobacterium spp. and Veillonellaceae (correlating with L-DOPA increase), and Lachnospira spp. (correlating with GABA). The digesta and fermenta were incubated with Caco-2 cells for 3 h followed by gene expression analysis. Effects were seen on genes related to serotonin synthesis/re-uptake/conversion to melatonin, gut tight junction, inflammation and circadian rhythm with different digesta and fermenta from the four treatments. These indicate potential effects of the substrates and the microbially generated organic acid and bioamine metabolites on intestinal functions that have physiological relevance. Further studies are required to confirm the potential bioaminergic effects of gut microbiota-kiwifruit interactions.

18.
Proc Natl Acad Sci U S A ; 117(46): 28960-28970, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33127761

ABSTRACT

Inhibition of the chemokine receptor CXCR4 in combination with blockade of the PD-1/PD-L1 T cell checkpoint induces T cell infiltration and anticancer responses in murine and human pancreatic cancer. Here we elucidate the mechanism by which CXCR4 inhibition affects the tumor immune microenvironment. In human immune cell-based chemotaxis assays, we find that CXCL12-stimulated CXCR4 inhibits the directed migration mediated by CXCR1, CXCR3, CXCR5, CXCR6, and CCR2, respectively, chemokine receptors expressed by all of the immune cell types that participate in an integrated immune response. Inhibiting CXCR4 in an experimental cancer medicine study by 1-wk continuous infusion of the small-molecule inhibitor AMD3100 (plerixafor) induces an integrated immune response that is detected by transcriptional analysis of paired biopsies of metastases from patients with microsatellite stable colorectal and pancreatic cancer. This integrated immune response occurs in three other examples of immune-mediated damage to noninfected tissues: Rejecting renal allografts, melanomas clinically responding to anti-PD1 antibody therapy, and microsatellite instable colorectal cancers. Thus, signaling by CXCR4 causes immune suppression in human pancreatic ductal adenocarcinoma and colorectal cancer by impairing the function of the chemokine receptors that mediate the intratumoral accumulation of immune cells.


Subject(s)
Colorectal Neoplasms/metabolism , Immunity/immunology , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Receptors, CXCR4/drug effects , Receptors, CXCR4/metabolism , Aged , Benzylamines , Carcinoma, Pancreatic Ductal , Chemokine CXCL12 , Colorectal Neoplasms/pathology , Cyclams , Female , Heterocyclic Compounds/antagonists & inhibitors , Humans , Immunotherapy , Male , Middle Aged , Pancreatic Neoplasms/pathology , Receptors, CCR2/metabolism , Receptors, CXCR3/metabolism , Receptors, CXCR5/metabolism , Receptors, CXCR6/metabolism , Receptors, Interleukin-8A/metabolism , Signal Transduction/drug effects , Tumor Microenvironment/immunology , Pancreatic Neoplasms
19.
Br J Cancer ; 123(9): 1424-1436, 2020 10.
Article in English | MEDLINE | ID: mdl-32741974

ABSTRACT

BACKGROUND: Personalised medicine strategies may improve outcomes in pancreatic ductal adenocarcinoma (PDAC), but validation of predictive biomarkers is required. Having developed a clinical trial to assess the ATR inhibitor, AZD6738, in combination with gemcitabine (ATRi/gem), we investigated ATM loss as a predictive biomarker of response to ATRi/gem in PDAC. METHODS: Through kinase inhibition, siRNA depletion and CRISPR knockout of ATM, we assessed how ATM targeting affected the sensitivity of PDAC cells to ATRi/gem. Using flow cytometry, immunofluorescence and immunoblotting, we investigated how ATRi/gem synergise in ATM-proficient and ATM-deficient cells, before assessing the impact of ATM loss on ATRi/gem sensitivity in vivo. RESULTS: Complete loss of ATM function (through pharmacological inhibition or CRISPR knockout), but not siRNA depletion, sensitised to ATRi/gem. In ATM-deficient cells, ATRi/gem-induced replication catastrophe was augmented, while phospho-Chk2-T68 and phospho-KAP1-S824 persisted via DNA-PK activity. ATRi/gem caused growth delay in ATM-WT xenografts in NSG mice and induced regression in ATM-KO xenografts. CONCLUSIONS: ATM loss augments replication catastrophe-mediated cell death induced by ATRi/gem and may predict clinical responsiveness to this combination. ATM status should be carefully assessed in tumours from patients with PDAC, since distinction between ATM-low and ATM-null could be critical in maximising the success of clinical trials using ATM expression as a predictive biomarker.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Carcinoma, Pancreatic Ductal/drug therapy , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Sulfoxides/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/physiology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Synergism , Female , Gene Knockout Techniques , Humans , Indoles , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Morpholines , Pancreatic Neoplasms/pathology , Pyridines/administration & dosage , Pyrimidines/administration & dosage , Quinolines/administration & dosage , RNA, Small Interfering/pharmacology , Sulfonamides , Sulfoxides/administration & dosage , Xenograft Model Antitumor Assays , Gemcitabine
20.
Sci Rep ; 10(1): 13055, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747727

ABSTRACT

Kiwifruit (KF) contains bioactive compounds with potential anti-inflammatory properties. In this study, we investigated the protective effects of KF on gastric and duodenal damage induced by soluble aspirin in healthy rats. Sixty-four male Sprague Dawley rats were allocated to eight experimental treatments (n = 8) and the experimental diets were fed for 14 days ad libitum. The experimental diets were 20% fresh pureed KF (green-fleshed and gold-fleshed) or 10% glucose solution (control diet). A positive anti-inflammatory control treatment (ranitidine) was included. At the end of the 14-day feeding period, the rats were fasted overnight, and the following morning soluble aspirin (400 mg/kg aspirin) or water (control) was administered by oral gavage. Four hours after aspirin administration, the rats were euthanized and samples taken for analysis. We observed no significant ulcer formation or increase in infiltration of the gastric mucosal inflammatory cells in the rats with the aspirin treatment. Despite this, there were significant changes in gene expression, such as in the duodenum of aspirin-treated rats fed green KF where there was increased expression of inflammation-related genes NOS2 and TNF-alpha. We also observed that gold and green KF diets had a number of contrasting effects on genes related to inflammation and gastro-protective effects.


Subject(s)
Actinidia/chemistry , Aspirin/adverse effects , Duodenum/pathology , Fruit/chemistry , Gastric Mucosa/pathology , Gene Expression Regulation , Inflammation/genetics , Stomach/pathology , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Duodenum/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gene Expression Regulation/drug effects , Inflammation/pathology , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Principal Component Analysis , Rats, Sprague-Dawley , Stomach/drug effects , Stomach Ulcer/drug therapy , Stomach Ulcer/genetics , Stomach Ulcer/pathology , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...