Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
JBJS Rev ; 10(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36574407

ABSTRACT

➢: Surgeon-performed intraoperative peripheral nerve blocks may improve operating room efficiency and reduce hospital resource utilization and, ultimately, costs. Additionally, these blocks can be safely performed intraoperatively by most orthopaedic surgeons, while only specifically trained physicians are able to perform ultrasound-guided peripheral nerve blocks. ➢: IPACK (infiltration between the popliteal artery and capsule of the knee) blocks are at least noninferior to periarticular infiltration when combined with an adductor canal block for analgesia following total knee arthroplasty. ➢: Surgeon-performed intraoperative adductor canal blocks are technically feasible and offer reliable anesthesia comparable with ultrasound-guided blocks performed by anesthesiologists. While clinical studies have shown promising results, additional Level-I studies are required. ➢: A surgeon-performed intraoperative psoas compartment block has been described as a readily available and safe technique, although there is some concern for femoral nerve analgesia, and temporary sensory changes have been reported.


Subject(s)
Arthroplasty, Replacement, Knee , Nerve Block , Surgeons , Humans , Arthroplasty, Replacement, Knee/methods , Nerve Block/methods , Pain, Postoperative/prevention & control , Femoral Nerve
2.
ACS Med Chem Lett ; 13(7): 1137-1143, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35859865

ABSTRACT

SETD2, a lysine N-methyltransferase, is a histone methyltransferase that plays an important role in various cellular processes and was identified as a target of interest in multiple myeloma that features a t(4,14) translocation. We recently reported the discovery of a novel small-molecule SETD2 inhibitor tool compound that is suitable for preclinical studies. Herein we describe the conformational-design-driven evolution of the advanced chemistry lead, which resulted in compounds appropriate for clinical evaluation. Further optimization of this chemical series led to the discovery of EZM0414, which is a potent, selective, and orally bioavailable inhibitor of SETD2 with good pharmacokinetic properties and robust pharmacodynamic activity in a mouse xenograft model.

3.
ACS Med Chem Lett ; 12(10): 1539-1545, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34671445

ABSTRACT

SET domain-containing protein 2 (SETD2), a histone methyltransferase, has been identified as a target of interest in certain hematological malignancies, including multiple myeloma. This account details the discovery of EPZ-719, a novel and potent SETD2 inhibitor with a high selectivity over other histone methyltransferases. A screening campaign of the Epizyme proprietary histone methyltransferase-biased library identified potential leads based on a 2-amidoindole core. Structure-based drug design (SBDD) and drug metabolism/pharmacokinetics (DMPK) optimization resulted in EPZ-719, an attractive tool compound for the interrogation of SETD2 biology that enables in vivo target validation studies.

4.
Sci Rep ; 8(1): 9711, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29946150

ABSTRACT

Evasion of the potent tumour suppressor activity of p53 is one of the hurdles that must be overcome for cancer cells to escape normal regulation of cellular proliferation and survival. In addition to frequent loss of function mutations, p53 wild-type activity can also be suppressed post-translationally through several mechanisms, including the activity of PRMT5. Here we describe broad anti-proliferative activity of potent, selective, reversible inhibitors of protein arginine methyltransferase 5 (PRMT5) including GSK3326595 in human cancer cell lines representing both hematologic and solid malignancies. Interestingly, PRMT5 inhibition activates the p53 pathway via the induction of alternative splicing of MDM4. The MDM4 isoform switch and subsequent p53 activation are critical determinants of the response to PRMT5 inhibition suggesting that the integrity of the p53-MDM4 regulatory axis defines a subset of patients that could benefit from treatment with GSK3326595.


Subject(s)
Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Splicing/genetics , Tumor Suppressor Protein p53/metabolism , Alternative Splicing/genetics , Antineoplastic Agents , Arginine/analogs & derivatives , Arginine/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle Proteins , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Enzyme Inhibitors/pharmacology , Humans , Nuclear Proteins/genetics , Protein Isoforms/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , snRNP Core Proteins/metabolism
5.
PLoS One ; 13(5): e0197082, 2018.
Article in English | MEDLINE | ID: mdl-29742153

ABSTRACT

WHSC1 is a histone methyltransferase that is responsible for mono- and dimethylation of lysine 36 on histone H3 and has been implicated as a driver in a variety of hematological and solid tumors. Currently, there is a complete lack of validated chemical matter for this important drug discovery target. Herein we report on the first fully validated WHSC1 inhibitor, PTD2, a norleucine-containing peptide derived from the histone H4 sequence. This peptide exhibits micromolar affinity towards WHSC1 in biochemical and biophysical assays. Furthermore, a crystal structure was solved with the peptide in complex with SAM and the SET domain of WHSC1L1. This inhibitor is an important first step in creating potent, selective WHSC1 tool compounds for the purposes of understanding the complex biology in relation to human disease.


Subject(s)
Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Neoplasms/drug therapy , Peptides/chemistry , Repressor Proteins/antagonists & inhibitors , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Histones/genetics , Humans , Lysine/chemistry , Neoplasms/enzymology , Norleucine/analogs & derivatives , Norleucine/chemistry , Norleucine/pharmacology , PR-SET Domains/genetics , Peptides/genetics , Protein Conformation/drug effects , Repressor Proteins/chemistry , Repressor Proteins/genetics
6.
Sci Rep ; 7(1): 17993, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269946

ABSTRACT

CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC50 = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC50 values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , CARD Signaling Adaptor Proteins/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Guanylate Cyclase/antagonists & inhibitors , Isoxazoles/therapeutic use , Multiple Myeloma/drug therapy , Pyrimidines/therapeutic use , Spiro Compounds/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Humans , In Vitro Techniques , Isoxazoles/pharmacokinetics , Male , Mice , Neoplasm Transplantation , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Spiro Compounds/pharmacokinetics
7.
ACS Med Chem Lett ; 7(2): 162-6, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26985292

ABSTRACT

The recent publication of a potent and selective inhibitor of protein methyltransferase 5 (PRMT5) provides the scientific community with in vivo-active tool compound EPZ015666 (GSK3235025) to probe the underlying pharmacology of this key enzyme. Herein, we report the design and optimization strategies employed on an initial hit compound with poor in vitro clearance to yield in vivo tool compound EPZ015666 and an additional potent in vitro tool molecule EPZ015866 (GSK3203591).

8.
Xenobiotica ; 46(3): 268-77, 2016.
Article in English | MEDLINE | ID: mdl-26294260

ABSTRACT

1. Metabolite profiling and identification studies were conducted to understand the cross-species differences in the metabolic clearance of EPZ015666, a first-in-class protein arginine methyltransferase-5 (PRMT5) inhibitor, with anti-proliferative effects in preclinical models of Mantle Cell Lymphoma. EPZ015666 exhibited low clearance in human, mouse and rat liver microsomes, in part by introduction of a 3-substituted oxetane ring on the molecule. In contrast, a higher clearance was observed in dog liver microsomes (DLM) that translated to a higher in vivo clearance in dog compared with rodent. 2. Structure elucidation via high resolution, accurate mass LC-MS(n) revealed that the prominent metabolites of EPZ015666 were present in hepatocytes from all species, with the highest turnover rate in dogs. M1 and M2 resulted from oxidative oxetane ring scission, whereas M3 resulted from loss of the oxetane ring via an N-dealkylation reaction. 3. The formation of M1 and M2 in DLM was significantly abrogated in the presence of the specific CYP2D inhibitor, quinidine, and to a lesser extent by the CYP3A inhibitor, ketoconazole, corroborating data from human recombinant isozymes. 4. Our data indicate a marked species difference in the metabolism of the PRMT5 inhibitor EPZ015666, with oxetane ring scission the predominant metabolic pathway in dog mediated largely by CYP2D.


Subject(s)
Enzyme Inhibitors/pharmacokinetics , Ethers, Cyclic/pharmacokinetics , Isoquinolines/pharmacokinetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacokinetics , Animals , Cytochrome P-450 CYP2D6 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Dogs , Hepatocytes/metabolism , Humans , Ketoconazole/pharmacokinetics , Male , Mice , Microsomes, Liver/metabolism , Quinidine/pharmacokinetics , Rats , Rats, Sprague-Dawley , Species Specificity
9.
Cancer Chemother Pharmacol ; 77(1): 43-62, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26645404

ABSTRACT

PURPOSE: The metabolism and disposition of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was investigated in rat and dog. Metabolite profiles were compared with those from adult patients in the first-in-man phase 1 study as well as the cross-species metabolism observed in vitro. METHODS: EPZ-5676 was administered to rat and dog as a 24-h IV infusion of [(14)C]-EPZ-5676 for determination of pharmacokinetics, mass balance, metabolite profiling and biodistribution by quantitative whole-body autoradiography (QWBA). Metabolite profiling and identification was performed by radiometric and LC-MS/MS analysis. RESULTS: Fecal excretion was the major route of elimination, representing 79 and 81% of the total dose in and rat and dog, respectively. QWBA in rats showed that the radioactivity was well distributed in the body, except for the central nervous system, and the majority of radioactivity was eliminated from most tissues by 168 h. Fecal recovery of dose-related material in bile duct-cannulated animals as well as higher radioactivity concentrations in the wall of the large intestine relative to liver implicated intestinal secretion as well as biliary elimination. EPZ-5676 underwent extensive oxidative metabolism with the major metabolic pathways being hydroxylation of the t-butyl group (EPZ007769) and N-dealkylation of the central nitrogen. Loss of adenine from parent EPZ-5676 (M7) was observed only in rat and dog feces, suggesting the involvement of gut microbiota. In rat and dog, steady-state plasma levels of total radioactivity and parent EPZ-5676 were attained rapidly and maintained through the infusion period before declining rapidly on cessation of dosing. Unchanged EPZ-5676 was the predominant circulating species in rat, dog and man. CONCLUSIONS: The excretory and metabolic pathways for EPZ-5676 were very similar across species. Renal excretion of both parent EPZ-5676 and EPZ-5676-related material was low, and in preclinical species fecal excretion of parent EPZ-5676 and EPZ007769 accounted for the majority of drug-related elimination.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Feces/chemistry , Methyltransferases/antagonists & inhibitors , Adult , Animals , Antineoplastic Agents/administration & dosage , Autoradiography/methods , Benzimidazoles/administration & dosage , Chromatography, Liquid/methods , Dogs , Female , Histone-Lysine N-Methyltransferase , Humans , Infusions, Intravenous , Male , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Species Specificity , Tandem Mass Spectrometry/methods , Tissue Distribution
10.
Nat Chem Biol ; 11(6): 432-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915199

ABSTRACT

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Lymphoma, Mantle-Cell/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Isoquinolines/chemistry , Isoquinolines/therapeutic use , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/enzymology , Male , Methylation , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Protein Binding , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays , snRNP Core Proteins/metabolism
11.
Inflamm Bowel Dis ; 17(12): 2416-26, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21438094

ABSTRACT

BACKGROUND: We developed a series of dendritic cell autoimmune modulators (DCAMs) based on small molecule Flt3 receptor tyrosine kinase inhibitors (TKIs) for the inhibition of intestinal inflammation and oral delivery. METHODS: DCAMs were administered orally during and after induction of dextran sodium sulfate (DSS)-induced colitis. Dendritic cell recruitment and inflammatory responses were determined in the mucosal immune system during acute intestinal inflammatory responses and mucosal recovery. Bone marrow-derived macrophages were utilized to define the mechanisms by which DCAMs can modify responses to microbial signals. RESULTS: Oral doses of DCAMs prevented severe weight loss and mucosal inflammation associated with DSS colitis in mice. The presence of DCAMs increased the number of CD11c(+) PDCA1(+) dendritic cells, induced interleukin (IL)-10 expression, and reduced inflammatory cytokine expression in the mucosal immune system. Surprisingly, DCAMs regulated innate immune responses in macrophages resulting in the inhibition of tumor necrosis factor alpha (TNF-α) production and the induction of IL-10 expression during Toll-like receptor-mediated signaling. CONCLUSIONS: We identified two new imidazoacridinone derivatives that protect mice from severe colitis and promote mucosal recovery by enhancing protective cytokine production while inhibiting proinflammatory stimuli during microbial recognition. These compounds are promising candidates for further development into potent orally available drugs for the prevention of colitis and promotion of mucosal recovery.


Subject(s)
Colitis/prevention & control , Inflammation/prevention & control , Intestines/drug effects , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Biomarkers/analysis , Colitis/chemically induced , Colitis/immunology , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dextran Sulfate/toxicity , Female , Immunity, Innate/drug effects , Inflammation/chemically induced , Inflammation/immunology , Intestines/immunology , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...