Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 524(7565): 322-4, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26289203

ABSTRACT

It is widely held that the first step in forming gas-giant planets, such as Jupiter and Saturn, was the production of solid 'cores' each with a mass roughly ten times that of the Earth. Getting the cores to form before the solar nebula dissipates (in about one to ten million years; ref. 3) has been a major challenge for planet formation models. Recently models have emerged in which 'pebbles' (centimetre-to-metre-sized objects) are first concentrated by aerodynamic drag and then gravitationally collapse to form objects 100 to 1,000 kilometres in size. These 'planetesimals' can then efficiently accrete left-over pebbles and directly form the cores of giant planets. This model is known as 'pebble accretion'; theoretically, it can produce cores of ten Earth masses in only a few thousand years. Unfortunately, full simulations of this process show that, rather than creating a few such cores, it produces a population of hundreds of Earth-mass objects that are inconsistent with the structure of the Solar System. Here we report that this difficulty can be overcome if pebbles form slowly enough to allow the planetesimals to gravitationally interact with one another. In this situation, the largest planetesimals have time to scatter their smaller siblings out of the disk of pebbles, thereby stifling their growth. Our models show that, for a large and physically reasonable region of parameter space, this typically leads to the formation of one to four gas giants between 5 and 15 astronomical units from the Sun, in agreement with the observed structure of the Solar System.

2.
Nature ; 520(7545): 40-1, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25832400
3.
Science ; 329(5988): 187-90, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20538912

ABSTRACT

Oort cloud comets are currently believed to have formed in the Sun's protoplanetary disk and to have been ejected to large heliocentric orbits by the giant planets. Detailed models of this process fail to reproduce all of the available observational constraints, however. In particular, the Oort cloud appears to be substantially more populous than the models predict. Here we present numerical simulations that show that the Sun captured comets from other stars while it was in its birth cluster. Our results imply that a substantial fraction of the Oort cloud comets, perhaps exceeding 90%, are from the protoplanetary disks of other stars.


Subject(s)
Evolution, Planetary , Meteoroids , Planets , Solar System , Stars, Celestial , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...