Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Alzheimer Res ; 18(12): 941-955, 2021.
Article in English | MEDLINE | ID: mdl-34951366

ABSTRACT

Βackground: ß-Amyloid precursor protein-cleaving enzyme-1 (BACE1) initiates the production of Aß-peptides that form Aß-plaque in Alzheimer's disease. METHODS: Reportedly, acute insulin treatment in normal mice, and hyperinsulinemia in high-fat-fed (HFF) obese/diabetic mice, increase BACE1 activity and levels of Aß-peptides and phospho- -thr-231-tau in the brain; moreover, these effects are blocked by PKC-λ/ι inhibitors. However, as chemical inhibitors may affect unsuspected targets, we presently used knockout methodology to further examine PKC-λ/ι requirements. We found that total-body heterozygous PKC-λ knockout reduced acute stimulatory effects of insulin and chronic effects of hyperinsulinemia in HFF/obese/diabetic mice, on brain PKC-λ activity and production of Aß1-40/42 and phospho-thr-231-tau. This protection in HFF mice may reflect that hepatic PKC-λ haploinsufficiency prevents the development of glucose intolerance and hyperinsulinemia. RESULTS: On the other hand, heterozygous knockout of PKC-λ markedly reduced brain levels of BACE1 protein and mRNA, and this may reflect diminished activation of nuclear factor kappa-B (NFκB), which is activated by PKC-λ and increases BACE1 and proinflammatory cytokine transcription. Accordingly, whereas intravenous administration of aPKC inhibitor diminished aPKC activity and BACE1 levels by 50% in the brain and 90% in the liver, nasally-administered inhibitor reduced aPKC activity and BACE1 mRNA and protein levels by 50-70% in the brain while sparing the liver. Additionally, 24-hour insulin treatment in cultured human-derived neurons increased NFκB activity and BACE1 levels, and these effects were blocked by various PKC-λ/ι inhibitors. CONCLUSION: PKC-λ/ι controls NFκB activity and BACE1 expression; PKC-λ/ι inhibitors may be used nasally to target brain PKC-λ/ι or systemically to block both liver and brain PKC-λ/ι, to regulate NFκB-dependent BACE1 and proinflammatory cytokine expression.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Diabetes Mellitus, Experimental , NF-kappa B , Protein Kinase C , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Mice , NF-kappa B/metabolism , Protein Kinase C/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...