Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 48(60): 7438-40, 2012 Aug 04.
Article in English | MEDLINE | ID: mdl-22659755

ABSTRACT

NiSO(4) and FeSO(4) self-assemble with heteroditopic ligands (L) comprising 2,2'-bipyridine and o-phenylene-(bis)urea cation- and anion-binding sites, respectively, into [ML(3)SO(4)] (M = Ni(2+), Fe(2+)) triple-stranded ion-pair helicates and mesocates.

2.
J Am Chem Soc ; 134(20): 8525-34, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22545671

ABSTRACT

We present an extensive study of a novel class of de novo designed tetrahedral M(4)L(6) (M = Ni, Zn) cage receptors, wherein internal decoration of the cage cavities with urea anion-binding groups, via functionalization of the organic components L, led to selective encapsulation of tetrahedral oxoanions EO(4)(n-) (E = S, Se, Cr, Mo, W, n = 2; E = P, n = 3) from aqueous solutions, based on shape, size, and charge recognition. External functionalization with tBu groups led to enhanced solubility of the cages in aqueous methanol solutions, thereby allowing for their thorough characterization by multinuclear ((1)H, (13)C, (77)Se) and diffusion NMR spectroscopies. Additional experimental characterization by electrospray ionization mass spectrometry, UV-vis spectroscopy, and single-crystal X-ray diffraction, as well as theoretical calculations, led to a detailed understanding of the cage structures, self-assembly, and anion encapsulation. We found that the cage self-assembly is templated by EO(4)(n-) oxoanions (n ≥ 2), and upon removal of the templating anion the tetrahedral M(4)L(6) cages rearrange into different coordination assemblies. The exchange selectivity among EO(4)(n-) oxoanions has been investigated with (77)Se NMR spectroscopy using (77)SeO(4)(2-) as an anionic probe, which found the following selectivity trend: PO(4)(3-) ≫ CrO(4)(2-) > SO(4)(2-) > SeO(4)(2-) > MoO(4)(2-) > WO(4)(2-). In addition to the complementarity and flexibility of the cage receptor, a combination of factors have been found to contribute to the observed anion selectivity, including the anions' charge, size, hydration, basicity, and hydrogen-bond acceptor abilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...