Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556711

ABSTRACT

Aluminium bronzes are widely used in various industries because of their unique properties, a combination of high strength, wear resistance, and corrosion resistance in aggressive environments, including seawater. In this study, the subject of comprehensive experimental research was Cu-10Al-5Fe iron-aluminium bronze (IAB) with ß-transformation, received in the form of hot-rolled bars. The effects of different heat treatments (HT) and severe surface plastic deformation (SPD), conducted by diamond burnishing (DB) on the microstructure, surface integrity (SI), mechanical properties, low- and mega-cycle fatigue strength, and dry sliding wear resistance, were determined. Based on quantitative indicators, the applied heat treatments in combination with severe SPD were compared. Thus, the integral efficiency of the heat treatments was evaluated, and the heat treatments were correlated with the resulting properties and operational behaviour of Cu-10Al-5Fe IAB. For example, if the component is designed for rotational bending conditions, the combination of quenching at 920 °C in water, subsequent tempering at 300 °C for three hours, and DB provides maximum fatigue strength in both low-cycle and mega-cycle fatigue applications.

2.
Materials (Basel) ; 15(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36143771

ABSTRACT

The aim of the present paper is to investigate the influence of factors in photopolymerization process that govern microhardness of three types of dental composites-universal (UC), bulk-fill (BC), and flowable (FC). Cylindrical specimens with different thicknesses are made and light cured. The significance of light intensity, irradiation time, and layer thickness on Vickers microhardness is evaluated by experimental design, analysis of variance, and regression analysis. It is found that the main factor influencing the microhardness on the top surface of the three composites is light intensity. The second factor is layer thickness for the UC and FC, while for BC, it is curing time. The third factor is curing time for the first two composites and layer thickness for bulk-fill. The significance of factors' influence on the microhardness of the bottom surface is the same for the UC and FC, but different for BC. The main factor for the first two composites is layer thickness, followed by curing time and light intensity. For bulk-fill, curing time is main factor, light intensity is second, and layer thickness is last. Different significance of factors influencing the microhardness on top and bottom surfaces of investigated composites is revealed for the first time in the present study.

3.
Materials (Basel) ; 15(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35888234

ABSTRACT

The disadvantages of widely used austenitic stainless steels are their low hardness and relatively low fatigue strength. Conventional chemical-thermal surface treatments are unsuitable for these steels since they create conditions for inter-granular corrosion. An effective alternative is a low-temperature surface treatment, creating an S-phase within the surface layer, but it has a high cost/quality ratio. Austenitic steels can increase their surface micro-hardness and fatigue strength via surface cold working. When the goal is to increase the rotating bending fatigue strength of austenitic chromium-nickel steels, and the requirements for significant wear resistance are not paramount, diamond burnishing (DB) has significant potential to increase the fatigue strength and, based on the cost/quality ratio, can successfully compete with low-temperature chemical-thermal treatments. The main objective of this study is to establish the effect of DB on the rotating fatigue strength of AISI 304 L chromium-nickel austenitic steel. The influence of DB parameters on the surface integrity (SI) characteristics was studied. Optimal DB parameters under minimum roughness and maximum micro-hardness criteria were obtained. Rotating bending fatigue tests of the diamond burnished (in a different manner) and untreated specimens were performed. DB implemented via parameters providing maximum micro-hardness increased fatigue limit by 38% compared to untreated specimens.

SELECTION OF CITATIONS
SEARCH DETAIL
...