Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Gastrointest Surg ; 8(6): 695-700, 2004.
Article in English | MEDLINE | ID: mdl-15358330

ABSTRACT

The number of patients requiring organ transplants still outpaces the number of available transplantable organs. During the process of orthotopic liver transplantation (OLTx), donor organs undergo significant stress resulting from ischemia and reperfusion. Healthy organs respond to this stressful environment with compensatory mechanisms that ideally allow for complete recovery. However, "marginal" organs do not compensate as well. Hepatic steatosis typically renders an organ nontransplantable; a liver with 30% or more fat has a 25% chance of primary nonfunction (PNF) or graft failure after a technically sound operation. In this study, we report on the significant markers of cellular ultrastructural change in steatotic livers. These include glycogen content, mitochondrial swelling, and hepatocellular blebbing. The data disclosed here argue that further investigation of these factors in marginal organs subjected to I/R may better facilitate our understanding of PNF.


Subject(s)
Ischemia/physiopathology , Liver Transplantation , Liver/pathology , Reperfusion Injury/physiopathology , Analysis of Variance , Chi-Square Distribution , Fatty Liver/pathology , Frozen Sections , Humans , Liver/blood supply , Microscopy, Electron , Prospective Studies
2.
J Morphol ; 163(3): 367-377, 1980 Mar.
Article in English | MEDLINE | ID: mdl-30184993

ABSTRACT

The sagitta otolithic membrane of Fundulus heteroclitus consists of two different zones. A structured zone (gelatinous layer), which usually exhibits a reticulated or honeycomb-like architecture, is composed of tightly arranged fibrous material and covers only the sensory region of the macula. The gelatinous layer extends from the otolith surface to the tips of the sensory hairs, and probably functions primarily as a mechanoreceptor. The arrangement of this zone is closely associated with specific overlying structural features of the otolith surface and may also influence the pattern of mineral deposition to some degree. A nonstructured zone (subcupular meshwork) consists of fibers in very loose networks and covers both sensory and nonsensory regions of the macula. Over the sensory region, some of this fibrous material extends from the epithelial surface, through pores in the gelatinous layer, to the surface of the overlying otolith. In the nonsensory region, fibers of the subcupular meshwork are relatively more numerous and extend around the peripheral margin of the otolith. Evidence is presented which suggests that the fibrous material of the subcupular meshwork is incorporated into the otolith as an organic matrix constituent. New aspects on the ultrastructure of the otolith are presented and discussed.

3.
J Morphol ; 150(2): 343-357, 1976 Oct.
Article in English | MEDLINE | ID: mdl-30301286

ABSTRACT

Ultrastructure and shell formation in the testaceous ameba, Lesquereusia spiralis, were investigated with both scanning and transmission electron microscopy and X-ray microanalysis. The nucleus, surrounded by a fibrous lamina, contains multiple nucleoli. The cytoplasm, containing a well developed granular endoplasmic reticulum, also contains remnants of starch granules in stages of digestion. Spherical aggregates of ribosome-like particles may be seen. Golgi complexes seem to produce both a nonordered fibrous material and an electron dense vesicle. Only the latter appears to bleb off from the Golgi complex. X-ray microanalysis demonstration of silicon in Golgi vesicles and in some dense vesicles suggests that the fibrous component of the cisternae may take up and concentrate silica to form the electron-dense component of the vesicles. Membrane-bound siliceous crystals are often seen adjacent to the Golgi, suggesting either a Golgi origin or platelet formation in vesicles after release from the Golgi complex. Both electron-dense bodies and siliceous platelets are released from the cell by a process similar to apocrine secretion and may be seen outside the cell in route to the shell during shell morphogenesis. Shell development involves fusion of electron-dense bodies to form a matrix, positioning of siliceous platelets in this matrix parallel to the shell surface, and development of a system of matrix chambers. A particulate glycoconjugate is released to the shell surface upon rupture of the matrix chamber.

SELECTION OF CITATIONS
SEARCH DETAIL
...