Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 200: 106834, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906232

ABSTRACT

The hepatitis B virus (HBV) capsid or core protein is a promising drug target currently being investigated for potential curative therapies for chronic HBV infection. In this study, we performed extensive in vitro and in vivo characterization of a novel and potent HBV core protein assembly modulator (CpAM), CU15, for both anti-HBV activity and druggability properties. CU15 potently inhibited HBV DNA replication in in vitro HBV-infected HepG2.2.15 cells (EC50 of 8.6 nM), with a low serum shift. It was also effective in inhibiting HBV DNA and cccDNA formation in de novo HBV-infected primary human hepatocytes. Furthermore, CU15 was active across several HBV genotypes and across clinically relevant core protein variants. After oral administration to an in vivo HBV mouse model, CU15 significantly reduced plasma HBV DNA and RNA levels, at plasma exposure consistent with the estimated in vitro potency. In vitro, CU15 exhibited excellent passive permeability and relatively high metabolic stability in liver preparations across species (human > dog> rat). In vitro human liver microsomal studies suggest that the compound's major metabolic pathway is CYP3A-mediated oxidation. Consistent with the in vitro findings, CU15 is a compound with a low-to-moderate clearance and high oral bioavailability in rats and dogs. Based on the apparent in vitro-in vivo correlation observed, CU15 has the potential to exhibit low clearance and high oral bioavailability in humans. In addition, CU15 also showed low drug-drug interaction liability with an acceptable in vitro safety profile (IC50 > 10 µM).

2.
Front Pharmacol ; 15: 1356273, 2024.
Article in English | MEDLINE | ID: mdl-38515840

ABSTRACT

Dabigatran etexilate (DABE) is a clinical probe substrate for studying drug-drug interaction (DDI) through an intestinal P-glycoprotein (P-gp). A recent in vitro study, however, has suggested a potentially significant involvement of CYP3A-mediated oxidative metabolism of DABE and its intermediate monoester BIBR0951 in DDI following microdose administration of DABE. In this study, the relative significance of CYP3A- and P-gp-mediated pathways to the overall disposition of DABE has been explored using mechanistic physiologically based pharmacokinetic (PBPK) modeling approach. The developed PBPK model linked DABE with its 2 intermediate (BIBR0951 and BIBR1087) and active (dabigatran, DAB) metabolites, and with all relevant drug-specific properties known to date included. The model was successfully qualified against several datasets of DABE single/multiple dose pharmacokinetics and DDIs with CYP3A/P-gp inhibitors. Simulations using the qualified model supported that the intestinal CYP3A-mediated oxidation of BIBR0951, and not the gut P-gp-mediated efflux of DABE, was a key contributing factor to an observed difference in the DDI magnitude following the micro-versus therapeutic doses of DABE with clarithromycin. Both the saturable CYP3A-mediated metabolism of BIBR0951 and the solubility-limited DABE absorption contributed to the relatively modest nonlinearity in DAB exposure observed with increasing doses of DABE. Furthermore, the results suggested a limited role of the gut P-gp, but an appreciable, albeit small, contribution of gut CYP3A in mediating the DDIs following the therapeutic dose of DABE with dual CYP3A/P-gp inhibitors. Thus, a possibility exists for a varying extent of CYP3A involvement when using DABE as a clinical probe in the DDI assessment, across DABE dose levels.

3.
RSC Adv ; 13(41): 29004-29022, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37807973

ABSTRACT

Hepatitis B virus (HBV) capsid assembly modulators (CAMs) are currently being evaluated in clinical trials as potential curative therapies for HBV. This study used in silico computational modeling to provide insights into the binding characteristics between the HBV core protein and two pyrrole-scaffold inhibitors, JNJ-6379 and GLP-26, both in the CAM-Normal (CAM-N) series. Molecular dynamics simulations showed that the pyrrole inhibitors displayed similar general binding-interaction patterns to NVR 3-778, another CAM-N, with hydrophobic interactions serving as the major driving force. However, consistent with their higher potency, the pyrrole inhibitors exhibited stronger nonpolar interactions with key residues in a solvent-accessible region as compared to NVR 3-778. This feature was facilitated by distinct hydrogen bond interactions of the pyrrole scaffold inhibitors with the residue 140 in chain B of the HBV core protein (L140B). Based on these findings, novel CAM-N compounds were designed to mimic the interaction with L140B residue while maximizing nonpolar interactions in the solvent-accessible region. Several 1H-pyrrole-2-carbonyl substituted pyrrolidine-based compounds with various hydrophobic side chains were synthesized and evaluated. Through analyses of the structure-activity and structure-druggability relations of a series of compounds, CU15 emerged as the most promising lead CAM-N compound, exhibiting sub-nanomolar potency and good pharmacokinetic profiles. Overall, the study demonstrated a practical approach to leverage computational methods for understanding key target binding features for rationale-based design, and for guiding the identification of novel compounds.

4.
Drug Metab Dispos ; 47(10): 1040-1049, 2019 10.
Article in English | MEDLINE | ID: mdl-31399508

ABSTRACT

Rhinacanthin-C is a major active constituent in Rhinacanthus nasutus (L.) Kurz, a plant widely used in herbal remedies. Its potential for pharmacokinetic herb-drug interaction may exist with drug transporters and drug metabolizing enzymes. This study assessed the possibility for rhinacanthin-C-mediated drug interaction by determining its inhibitory effects against major human efflux and influx drug transporters as well as various human cytochrome P450(CYP) isoforms. Rhinacanthin-C demonstrated a moderate permeability through the Caco-2 monolayers [Papp (AP-to-BL) = 1.26 × 10-6 cm/s]. It significantly inhibited transport mediated by both P-glycoprotein (P-gp) (IC50 = 5.20 µM) and breast cancer resistance protein (BCRP) (IC50 = 0.83 µM) across Caco-2 and BCRP-overexpressing Madin-Darby canine kidney II cells (MDCKII) cells. This compound also strongly inhibited uptake mediated by organic anion-transporting polypeptide 1B1 (OATP1B1) (IC50 = 0.70 µM) and OATP1B3 (IC50 = 3.95 µM) in OATP1B-overexpressing HEK cells. In addition to its inhibitory effect on these drug transporters, rhinacanthin-C significantly inhibited multiple human CYP isoforms including CYP2C8 (IC50 = 4.56 µM), 2C9 (IC50 = 1.52 µM), 2C19 (IC50 = 28.40 µM), and 3A4/5 (IC50 = 53 µM for midazolam and IC50 = 81.20 µM for testosterone), but not CYP1A2, 2A6, 2B6, 2D6, and 2E1. These results strongly support a high propensity for rhinacanthin-C as a perpetrator of clinical herb-drug interaction via inhibiting various influx and efflux drug transporters (i.e., P-gp, BCRP, OATP1B1, and OATP1B3) and CYP isoforms (i.e., CYP2C8, CYP2C9, and CYP2C19). Thus, the potential for significant pharmacokinetic herb-drug interaction should be addressed when herbal products containing rhinacanthin-C are to be used in conjunction with other prescription drugs.


Subject(s)
Acanthaceae/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Herb-Drug Interactions , Naphthoquinones/pharmacology , Prescription Drugs/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Caco-2 Cells , Cell Membrane Permeability/drug effects , Cytochrome P-450 Enzyme System/metabolism , Dogs , HEK293 Cells , Humans , Inhibitory Concentration 50 , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Liver-Specific Organic Anion Transporter 1/metabolism , Madin Darby Canine Kidney Cells , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Recombinant Proteins/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/antagonists & inhibitors , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
5.
J Pharm Pharmacol ; 71(2): 213-219, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30251430

ABSTRACT

OBJECTIVES: This study investigated the absorptive potential of phyllanthin across the polarized Caco-2 monolayers and the potential role of phyllanthin in P-glycoprotein (P-gp)-mediated drug interaction. METHODS: The absorptive potential of phyllanthin was predicted from its apparent permeability (Papp ) across the Caco-2 monolayers under the pH gradient condition (pH 6.5AP -7.4BL ) at 37°C. Integrity of paracellular transport was assessed by monitoring transepithelial electrical resistance (TEER) and lucifer yellow (LY) leakage. P-gp-mediated interaction was evaluated by transport studies of phyllanthin and rhodamine-123. KEY FINDINGS: The absorptive Papp of phyllanthin (34.90 ± 1.18 × 10-6 cm/s) was in the same rank order as the high permeable theophylline and antipyrine. Phyllanthin transport in the absorptive and secretive directions was comparable (the efflux ratio (ER) of 1.19 ± 0.01). Phyllanthin caused no changes in TEER nor LY leakage in the monolayers. However, phyllanthin increased rhodamine-123 ER in a concentration-dependent manner, suggesting its inhibition on P-gp function. In addition, phyllanthin aqueous solubility was <5 µg/ml at 37°C. CONCLUSIONS: Phyllanthin is a highly permeable compound that could passively diffuse through the absorptive barrier via transcellular pathway with little hindrance from P-gp. Phyllanthin could interfere with transport of P-gp drug substrates, when concomitantly administered. In addition, aqueous solubility could be a limiting factor in phyllanthin absorption.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Herb-Drug Interactions , Intestinal Absorption , Lignans/administration & dosage , Biological Transport , Caco-2 Cells , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Isoquinolines/metabolism , Lignans/pharmacokinetics , Lignans/pharmacology , Permeability , Rhodamine 123/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...