Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Drug Resist ; 5(3): 829-845, 2022.
Article in English | MEDLINE | ID: mdl-36176766

ABSTRACT

Aim: Despite the huge advancements in cancer therapies and treatments over the past decade, most patients with metastasized melanoma still die from the disease. This poor prognosis largely results from resistance to conventional chemotherapies and other cytotoxic drugs. We have previously identified 6 antigenic peptides derived from melanomas that have proven efficacious for activating CD4+ T cells in clinical trials for melanoma. Our aim was to improve pharmacodynamics, pharmacokinetic and toxicological parameters by individually encapsulating each of the 6 melanoma helper peptides within their own immunogenic nanoliposomes. Methods: We modified these liposomes as necessary to account for differences in the peptides' chemical properties, resulting in 3 distinct formulations. To further enhance immunogenicity, we also incorporated KDO2, a TLR4 agonist, into the lipid bilayer of all nanoliposome formulations. We then conducted in vivo imaging studies in mice and ex vivo cell studies from 2 patient samples who both strongly expressed one of the identified peptides. Results: We demonstrate that these liposomes, loaded with the different melanoma helper peptides, can be readily mixed together and simultaneously delivered without toxicity in vivo. These liposomes are capable of being diffused to the secondary lymphoid organs very quickly and for at least 6 days. In addition, we show that these immunogenic liposomes enhance immune responses to specific peptides ex vivo. Conclusion: Lipid-based delivery systems, including nanoliposomes and lipid nanoparticles, have now been validated for pharmacological (small molecules, bioactive lipids) and molecular (mRNA, siRNA) therapeutic approaches. However, the utility of these formulations as cancer vaccines, delivering antigenic peptides, has not yet achieved the same degree of commercial success. Here, we describe the novel and successful development of a nanoliposome-based cancer vaccine for melanoma. These vaccines help to circumvent drug resistance by increasing a patient's T cell response, making them more susceptible to checkpoint blockade therapy.

2.
Cancer Res ; 71(21): 6817-26, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21903767

ABSTRACT

Radiotherapy combined with androgen depletion is generally successful for treating locally advanced prostate cancer. However, radioresistance that contributes to recurrence remains a major therapeutic problem in many patients. In this study, we define the high-affinity neurotensin receptor 1 (NTR1) as a tractable new molecular target to radiosensitize prostate cancers. The selective NTR1 antagonist SR48692 sensitized prostate cancer cells in a dose- and time-dependent manner, increasing apoptotic cell death and decreasing clonogenic survival. The observed cancer selectivity for combinations of SR48692 and radiation reflected differential expression of NTR1, which is highly expressed in prostate cancer cells but not in normal prostate epithelial cells. Radiosensitization was not affected by androgen dependence or androgen receptor expression status. NTR1 inhibition in cancer cell-attenuated epidermal growth factor receptor activation and downstream signaling, whether induced by neurotensin or ionizing radiation, establish a molecular mechanism for sensitization. Most notably, SR48692 efficiently radiosensitized PC-3M orthotopic human tumor xenografts in mice, and significantly reduced tumor burden. Taken together, our findings offer preclinical proof of concept for targeting the NTR1 receptor as a strategy to improve efficacy and outcomes of prostate cancer treatments using radiotherapy.


Subject(s)
Adenocarcinoma/radiotherapy , Neoplasm Proteins/antagonists & inhibitors , Prostatic Neoplasms/radiotherapy , Pyrazoles/therapeutic use , Quinolines/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Receptors, Neurotensin/antagonists & inhibitors , Adenocarcinoma/pathology , Androgens , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor/drug effects , Cell Line, Tumor/radiation effects , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Mice, Nude , Neoplasm Proteins/physiology , Neoplasms, Hormone-Dependent/pathology , Neoplasms, Hormone-Dependent/radiotherapy , Phosphorylation/drug effects , Phosphorylation/radiation effects , Prostatic Neoplasms/pathology , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/radiation effects , Pyrazoles/pharmacology , Quinolines/pharmacology , Radiation Tolerance/drug effects , Radiation Tolerance/physiology , Radiation-Sensitizing Agents/pharmacology , Receptors, Androgen/analysis , Receptors, Neurotensin/physiology , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
3.
Cancer Res ; 67(17): 8316-24, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17804747

ABSTRACT

2-Methoxyestradiol (2ME2) is an endogenous estradiol metabolite that inhibits microtubule polymerization, tumor growth, and angiogenesis. Because prostate cancer is often treated with radiotherapy, and 2ME2 has shown efficacy as a single agent against human prostate carcinoma, we evaluated 2ME2 as a potential radiosensitizer in prostate cancer models. A dose-dependent decrease in mitogen-activated protein kinase phosphorylation was observed in human PC3 prostate cancer cells treated with 2ME2 for 18 h. This decrease correlated with in vitro radiosensitization measured by clonogenic assays, and these effects were blocked by the expression of constitutively active MEK. Male nude mice with subcutaneous PC3 xenografts in the hind leg were treated with 2ME2 (75 mg/kg) p.o. for 5 days, and 2 Gy radiation fractions were delivered each day at 4 h after drug treatment. A statistically significant super-additive effect between radiation and 2ME2 was observed in this subcutaneous model, using analysis of within-animal slopes. A PC-3M orthotopic model was also used, with bioluminescence imaging as an end point. PC-3M cells stably expressing the luciferase gene were surgically implanted into the prostates of male nude mice. Mice were given oral doses of 2ME2 (75 mg/kg), with radiation fractions (3 Gy) delivered 4 h later. Mice were then imaged weekly for 4 to 5 weeks with a Xenogen system. A significant super-additive effect was also observed in the orthotopic model. These data show that 2ME2 is an effective radiosensitizing agent against human prostate cancer xenografts, and that the mechanism may involve a decrease in mitogen-activated protein kinase phosphorylation by 2ME2.


Subject(s)
Carcinoma/metabolism , Carcinoma/radiotherapy , Estradiol/analogs & derivatives , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , 2-Methoxyestradiol , Animals , Carcinoma/enzymology , Estradiol/pharmacology , Estradiol/therapeutic use , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Prostatic Neoplasms/enzymology , Subcutaneous Tissue , Transplantation, Heterotopic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
FASEB J ; 20(12): 2150-2, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16940438

ABSTRACT

Class 3 semaphorins (sema 3) are secreted guidance proteins. Sema 3A expressed by endothelial cells controls vascular morphogenesis through integrin inhibition. Sema 3C is required for normal cardiovascular patterning. Here we examined the potential role of sema 3C as regulator of endothelial cell function in vitro using mouse glomerular endothelial cells (MGEC). We determined that MGEC express sema 3C mRNA and protein and its receptors mRNA. Recombinant sema 3C induced MGEC proliferation 18 +/- 2% above control, as assessed by bromodeoxyuridine (BrdU) incorporation, and reduced starvation-induced apoptosis by 46 +/- 3%, as indicated by an in situ marker of activated caspase 3. Sema 3C increased MGEC adhesion to fibronectin 79 +/- 13% and to collagen 55 +/- 12% as compared with control. Sema 3C-induced MGEC adhesion was prevented by integrin blocking antibodies and involved beta1 integrin serine phosphorylation. Sema 3C-induced MGEC adhesion and proliferation were similar to those induced by vascular endothelial growth factor (VEGF)-A. Sema 3C induced a 44 +/- 11% increase in MGEC directional migration and stimulated MGEC capillary-like network formation on collagen I gels. Collectively, our data indicate that sema 3C promotes glomerular endothelial cell proliferation, adhesion, directional migration, and tube formation in vitro by stimulating integrin phosphorylation and VEGF120 secretion, functions that are similar to VEGF-A and opposite to sema 3A.


Subject(s)
Endothelial Cells/drug effects , Endothelial Cells/physiology , Integrin beta1/drug effects , Semaphorins/physiology , Animals , Cell Adhesion , Cell Movement , Cell Proliferation , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Integrin beta1/metabolism , Integrins/drug effects , Integrins/metabolism , Kidney/cytology , Mice , Neovascularization, Physiologic , Phosphorylation , Recombinant Proteins/pharmacology , Semaphorins/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...