Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929376

ABSTRACT

Probiotics provided from hatch have a major influence on microbiota development, and together with environmental and bedding microbiota, shape the microbial community of the litter. We investigated the influence of probiotic supplementation and a leaky gut challenge induced using dexamethasone (DEX) on the litter microbial community and litter parameters. The probiotic product was a mix of three Bacillus amyloliquefaciens strains. The litter microbiota were compared to the microbial communities from other gut sections. The litter samples had higher microbial diversity compared to the caecum, gizzard, jejunum, and jejunal mucosa. The high similarity between the litter phylum-level microbiota and gizzard microbiota detected in our study could be a consequence of ingested feed and litter passing through the gizzard. Moreover, the litter microbial community is fundamentally distinct from the intestinal microbiota, as evidenced by the number of genera present in the litter but absent from all the intestinal sections and vice versa. Furthermore, LEfSe analysis identified distinct microbial taxa across different groups, with specific genera associated with different treatments. In terms of litter quality, the birds in the DEX groups had a significantly higher moisture content, indicating successful leaky gut challenge, while probiotic supplementation did not significantly affect the moisture levels. These findings provide comprehensive insights into the distinct microbiota characteristics of litter.

3.
Poult Sci ; 100(6): 101071, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33848927

ABSTRACT

Maintaining dry litter that chickens can "work" is a key objective for successful meat chicken production as it reduces the likelihood of health and welfare issues by breaking down and working excreta and contributing to the water evaporation process. Litter turning is a practice that may help reduce moisture content within the litter by accelerating the drying process when it is combined with effective ventilation. However, information and research about the practice and the effects it could have on the health and well-being of meat chickens (broilers) are minimal. A recent survey of Australian meat chicken growers reiterated the concerns they have about its impact on chicken well-being, but it also demonstrated how growers thought it could enhance the effectiveness of their operation. The aim of this review paper is to identity information relevant to litter turning and the potential effects of this practice on litter quality, ammonia emissions, litter moisture, and animal welfare. This review demonstrates the need for additional research to validate perceptions and address potential concerns and impacts that this practice may have on broiler production. Closing this knowledge gap will improve litter turning practices leading to safer and more consistent outcomes.


Subject(s)
Chickens , Poultry , Ammonia , Animals , Australia , Housing, Animal
4.
Poult Sci ; 100(5): 101078, 2021 May.
Article in English | MEDLINE | ID: mdl-33799118

ABSTRACT

An overhead sprinkler system that directly applies water onto meat chickens in tunnel ventilated houses was evaluated and compared with a conventional evaporative cooling pad system at 2 commercial farms in south-eastern Queensland, Australia. The sprinkler system was used to reduce the use of evaporative cooling pads as the primary cooling system but not replace evaporative cooling pads altogether. The sprinkler system used low water pressure and comprised evenly spaced sprinklers and a programmable controller. Water was applied intermittently based on house temperature and a temperature program that was related to bird age. The study was conducted over 6 sequential grow-outs during a 1-year period. Air temperature, relative humidity, litter moisture content, cooling water usage, live market weight, and mortality were assessed during the study. The effect of sprinklers on these measured parameters was complicated by interactions with farm, batch, bird age, and time of day. We found that, in general, houses with combined sprinkler and evaporative cooling pad systems used less water, while having similar litter moisture content, live market weight, and mortality compared with control houses that were fitted with conventional evaporative cooling pads. When evaporative cooling was required, sprinkler houses had warmer air temperature but lower relative humidity than the control houses. Bird comfort due to the direct cooling effect of water evaporating off the birds was not directly assessed during this study but was inferred from thermal camera images and from live weight and mortality data. This was the first study in Australia involving this sprinkler system, and we suggest that the sprinkler system design and operation may require some adaptation to better suit Australian poultry house design and climatic conditions, including the need for additional sprinklers to improve coverage, lower set-point temperatures, and altering sprinkler spacing to suit ceiling baffle curtains (if fitted).


Subject(s)
Housing, Animal , Water , Animals , Australia , Chickens , Cold Temperature , Water/analysis
5.
Poult Sci ; 96(4): 851-860, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27664201

ABSTRACT

The effect of dietary crude protein (CP) and additives on odor flux from meat chicken litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replicates of 12 birds each. A 5 × 3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). The antibiotic used was Zn bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were collected from litter headspace with a flux hood and measured using selective ion flow tube mass spectrometry (SIFT-MS). Litter moisture, water activity (Aw), and litter headspace odorant concentrations were correlated. The results showed that low CP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3, and phenol in litter compared to high CP group (P < 0.05). Similarly, high CP+probiotic group produced lower flux of H2S (P < 0.05) and high CP+saponin group produced lower flux of trimethylamine and phenol in litter compared to high CP group (P < 0.05). The dietary treatments tended (P = 0.065) to have higher flux of methanethiol in high CP group compared to others. There was a diet × age interaction for litter flux of diacetyl, 3-hydroxy-2-butanone (acetoin), 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid, and hexane (P < 0.05). Concentrations of diacetyl, acetoin, propionic acid, and hexane in litter were higher from low CP group compared to all other treatments on d 35 (P < 0.05) but not on d 15 and 29. A high litter moisture increased water activity (P < 0.01) and favored the emissions of methyl mercaptan, hydrogen sulfide, dimethyl sulfide, ammonia, trimethyl amine, phenol, indole, and 3-methylindole over others. Thus, the low CP diet, Bacillus subtilis based probiotic and the blend of Yucca/Quillaja  saponin were effective in reducing the emissions of some key odorants from meat chicken litter.


Subject(s)
Animal Feed/analysis , Chickens/metabolism , Diet/veterinary , Dietary Proteins/analysis , Dietary Supplements/analysis , Odorants/analysis , Air Pollution, Indoor , Animals , Dietary Proteins/administration & dosage , Housing, Animal , Male , Mass Spectrometry/veterinary , Random Allocation
6.
Sci Total Environ ; 562: 766-776, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27110988

ABSTRACT

The problem of 'wet litter', which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality.


Subject(s)
Animal Husbandry/methods , Housing, Animal , Animals , Chickens , Diet/veterinary
7.
J Environ Manage ; 177: 306-19, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27111649

ABSTRACT

Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts.


Subject(s)
Manure/analysis , Odorants/analysis , Poultry , Animals , Chickens , Environmental Monitoring , Gases , Housing, Animal , Manure/microbiology , Manuscripts, Medical as Topic , Porosity , Water/chemistry
8.
J Environ Manage ; 172: 201-6, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26946169

ABSTRACT

Poultry grown on litter floors are in contact with their own waste products. The waste material needs to be carefully managed to reduce food safety risks and to provide conditions that are comfortable and safe for the birds. Water activity (Aw) is an important thermodynamic property that has been shown to be more closely related to microbial, chemical and physical properties of natural products than moisture content. In poultry litter, Aw is relevant for understanding microbial activity; litter handling and rheological properties; and relationships between in-shed relative humidity and litter moisture content. We measured the Aw of poultry litter collected throughout a meat chicken grow-out (from fresh pine shavings bedding material to day 52) and over a range of litter moisture content (10-60%). The Aw increased non-linearly from 0.71 to 1.0, and reached a value of 0.95 when litter moisture content was only 22-33%. Accumulation of manure during the grow-out reduced Aw for the same moisture content. These results are relevant for making decisions regarding litter re-use in multiple grow-outs as well as setting targets for litter moisture content to minimise odour, microbial risks and to ensure necessary litter physical conditions are maintained during a grow-out. Methods to predict Aw in poultry litter from moisture content are proposed.


Subject(s)
Manure , Poultry , Water/analysis , Animals , Chickens , Floors and Floorcoverings , Housing, Animal , Manure/microbiology , Microbiota , Rheology
9.
Sci Total Environ ; 538: 979-85, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26367067

ABSTRACT

Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis.


Subject(s)
Environmental Monitoring , Housing, Animal , Poultry , Water Cycle , Water Supply/statistics & numerical data , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...