Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 178, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575567

ABSTRACT

Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our cohort: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissues. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly associated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high-impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.


Subject(s)
Alzheimer Disease , Apathy , Psychotic Disorders , Humans , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Behavioral Symptoms
2.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38262736

ABSTRACT

Stress-inducing events during pregnancy are associated with aberrant neurodevelopment resulting in adverse psychiatric outcomes, including autism spectrum disorder (ASD). While numerous preclinical models for the study of ASD are frequently generated using C57BL/6J mice, few studies have investigated the effects of prenatal stress on this genetic background. In the current manuscript, we stressed C57BL/6 dams during gestation and examined numerous behavioral and molecular endophenotypes in the adult male and female offspring to characterize the resultant phenotype as compared with offspring born from nonstressed (NS) dams. Adult mice born from prenatal restraint stressed (PRS) dams demonstrated reduced sociability and reciprocal social interaction along with increased marble burying behaviors relative to mice born from nonstressed control dams. Differential expression of genes related to excitatory and inhibitory neurotransmission was evaluated in the medial prefrontal cortex, amygdala, hippocampus, nucleus accumbens and caudate putamen via qRT-PCR. The male PRS mouse behavioral phenotype coincided with aberrant expression of glutamate and GABA marker genes (e.g., Grin1, Grin2b, Gls, Gat1, Reln) in neural substrates of social behavior. Rescue of the male PRS sociability deficit by a known antipsychotic with epigenetic properties (i.e., clozapine (5 mg/kg) + 18 hr washout) indicated possible epigenetic regulation of genes that govern sociability. Clozapine treatment increased the expression levels of genes involved in DNA methylation, histone methylation, and histone acetylation in the nucleus accumbens. Identification of etiology-specific mechanisms underlying clinically relevant behavioral phenotypes may ultimately provide novel therapeutic interventions for the treatment of psychiatric disorders including ASD.


Subject(s)
Autism Spectrum Disorder , Clozapine , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Male , Female , Animals , Mice , Clozapine/pharmacology , Histones/metabolism , Autism Spectrum Disorder/genetics , Epigenesis, Genetic , Prenatal Exposure Delayed Effects/genetics , Mice, Inbred C57BL , Behavior, Animal/physiology , Disease Models, Animal
3.
Discov Ment Health ; 4(1): 3, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175420

ABSTRACT

Depression is a common and devastating neuropsychiatric symptom in the elderly and in patients with dementia. In particular, nearly 80% of patients with Alzheimer's Disease dementia experience depression during disease development and progression. However, it is unknown whether the depression in patients with dementia shares the same molecular mechanisms as depression presenting as primary psychiatric disease or occurs and persists through alternative mechanisms. In this review, we discuss how the clinical presentation and treatment differ between depression in dementia and as a primary psychiatric disease, with a focus on major depressive disorder. Then, we hypothesize several molecular mechanisms that may be unique to depression in dementia such as neuropathological changes, inflammation, and vascular events. Finally, we discuss existing issues and future directions for investigation and treatment of depression in dementia.

4.
Neurobiol Aging ; 126: 113-122, 2023 06.
Article in English | MEDLINE | ID: mdl-36989547

ABSTRACT

Most patients with Alzheimer's disease (AD) develop neuropsychiatric symptoms (NPS) alongside cognitive decline, and apathy is one of the most common symptoms. Few preclinical studies have investigated the biological substrates underlying NPS in AD. In this study, we used a cross-sectional design to characterize apathy-like behaviors and assess memory in 5xFAD and wildtype control mice at 6, 12, and 16 months of age. Nest building, burrowing, and marble burying were used to test representative behaviors of apathy, and a composite score of apathy-like behavior was generated from these assays. Soluble Aß42 and plaques were quantified in the prefrontal cortex and hippocampus of the 5xFAD mice with the highest and lowest composite scores using ELISA and histology. Results suggest that 5xFAD mice develop significant apathy-like behaviors starting at 6 months of age that worsen with aging and are positively correlated with soluble Aß42 and plaques in the prefrontal cortex and hippocampus. Our findings highlight the utility of studying NPS in mouse models of AD to uncover important relationships with underlying neuropathology.


Subject(s)
Alzheimer Disease , Apathy , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides , Cross-Sectional Studies , Mice, Transgenic , Disease Models, Animal
5.
Res Sq ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36711772

ABSTRACT

Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our sample: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissue. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly correlated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.

6.
Int J Neuropsychopharmacol ; 23(8): 533-542, 2020 11 26.
Article in English | MEDLINE | ID: mdl-32619232

ABSTRACT

BACKGROUND: Several cases of autism spectrum disorder have been linked to mutations in the SHANK3 gene. Haploinsufficiency of the SHANK3 gene contributes to Phelan-McDermid syndrome, which often presents an autism spectrum disorder phenotype along with moderate to severe intellectual disability. A SHANK3 gene deletion in mice results in elevated excitation of cortical pyramidal neurons that alters signaling to other brain areas. Serotonin 1A receptors are highly expressed on layer 2 cortical neurons and are known to have inhibitory actions. Serotonin 1A receptor agonist treatment in autistic cases with SHANK3 mutations and possibly other cases may restore excitatory and inhibitory balance that attenuates core symptoms. METHODS: A series of experiments investigated the effects of acute tandospirone treatment on spatial learning and self-grooming, subchronic treatment of tandospirone on self-grooming behavior, and the effect of tandospirone infusion into the anterior cingulate on self-grooming behavior. RESULTS: Only male Shank3B+/- mice exhibited a spatial learning deficit and elevated self-grooming. Acute i.p. injection of tandospirone, 0.01 and 0.06 mg/kg in male Shank3B+/- mice, attenuated a spatial acquisition deficit by improving sensitivity to positive reinforcement and reduced elevated self-grooming behavior. Repeated tandospirone (0.06 mg/kg) treatment attenuated elevated self-grooming behavior in male Shank3B+/- mice. Tandospirone injected into the anterior cingulate/premotor area reduced self-grooming behavior in male Shank3B+/- mice. CONCLUSIONS: These results suggest that stimulation of cortical serotonin 1A receptors may reduce repetitive behaviors and cognitive impairments as observed in autism spectrum disorder, possibly by attenuating an excitation/inhibition imbalance. Further, tandospirone may serve as a treatment in autism spectrum disorder and other disorders associated with SHANK3 mutations.


Subject(s)
Behavior, Animal/drug effects , Grooming/drug effects , Gyrus Cinguli/drug effects , Isoindoles/administration & dosage , Maze Learning/drug effects , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Piperazines/administration & dosage , Pyrimidines/administration & dosage , Receptor, Serotonin, 5-HT1A/drug effects , Serotonin 5-HT1 Receptor Agonists/administration & dosage , Animals , Female , Gyrus Cinguli/metabolism , Infusions, Parenteral , Injections, Intraperitoneal , Locomotion/drug effects , Male , Mice, Knockout , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Sex Factors
7.
Autism Res ; 11(2): 223-233, 2018 02.
Article in English | MEDLINE | ID: mdl-29193861

ABSTRACT

Restricted interests and repetitive behaviors (RRBs) are a defining feature of autism spectrum disorder (ASD). To date there are limited options for treating this core symptomology. Treatments that stimulate adenosine A2A receptors may represent a promising approach for reducing RRBs in ASD. This is because A2A receptors are expressed on striatal neurons of the basal ganglia indirect pathway. Under activation of this pathway has been associated with RRBs while activation of A2A receptors leads to increased activity of the indirect basal ganglia pathway. The present studies investigated whether acute, systemic treatment with CGS21680, an A2A receptor agonist attenuates elevated self-grooming and a probabilistic reversal learning deficit in the BTBR T+ Itpr3tf /J (BTBR) mouse model of idiopathic autism. The effects of this treatment were also investigated in C57BL/6J (B6) mice as a comparison strain. Using a spatial reversal learning test with 80/20 probabilistic feedback, comparable to one in which ASD individuals exhibit deficits, CGS 21680 (0.005 and 0.01mg/kg) attenuated a reversal learning deficit in BTBR mice. Enhancement in probabilistic reversal learning performance resulted from CGS 21680 improving the consistent maintenance of new adaptive behavioral choice patterns after reversal. CGS 21680 at 0.01 mg, but not 0.005 mg, also reduced self-grooming behavior in BTBR mice. CGS 21680 did not affect self-grooming or reversal learning in B6 mice. These findings demonstrate that A2A receptor agonists may be a promising receptor target in the treatment of RRBs in ASD. Autism Res 2018, 11: 223-233. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: The present experiments determined whether the drug, CGS 21680, that facilitates activation of adenosine A2A receptors in the brain, would reduce repetitive and inflexible behaviors in the BTBR mouse model of idiopathic autism. CGS 21680 treatment in BTBR mice reduced repetitive and inflexible behaviors. In the control C57BL/6J (B6) mouse strain, CGS 21680 did not affect performance. These findings suggest that stimulation of brain adenosine A2A receptors may be a promising therapeutic strategy in ASD.


Subject(s)
Adenosine/analogs & derivatives , Autism Spectrum Disorder/physiopathology , Grooming/drug effects , Phenethylamines/pharmacology , Receptor, Adenosine A2A/drug effects , Reversal Learning/drug effects , Stereotyped Behavior/drug effects , Adenosine/pharmacology , Animals , Brain/drug effects , Disease Models, Animal , Grooming/physiology , Male , Mice , Mice, Inbred Strains , Receptor, Adenosine A2A/physiology , Reversal Learning/physiology , Stereotyped Behavior/physiology
8.
Behav Brain Res ; 313: 67-70, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27378338

ABSTRACT

Individuals with autism spectrum disorder (ASD) exhibit social-communication deficits along with restricted interests and repetitive behaviors (RRBs). To date, there is a lack of effective treatments to alleviate RRBs. A recent study found that treatment with the 5HT2A receptor antagonist M100907 attenuates a reversal learning deficit in the BTBR mouse model of autism. The BTBR mouse also exhibits elevated grooming behavior which may model stereotyped motor behaviors also observed in ASD. The present study examined whether 5HT2A receptor blockade with M100907 at either 0.01 or 0.1mg/kg can reduce repetitive grooming in BTBR mice compared to that of vehicle-treated BTBR and C57BL6/J (B6) mice. M100907 at 0.1mg/kg, but not 0.01mg/kg, significantly attenuated repetitive grooming in BTBR mice compared to that of vehicle-treated BTBR mice. M100907 at either dose did not affect grooming behavior in B6 mice. To determine whether 0.1mg/kg M100907 had a more general effect on activity in BTBR mice, a second experiment determined whether M100907 at 0.1mg/kg affected locomotor activity in BTBR mice. M100907 treatment in BTBR and B6 mice did not alter locomotor activity compared to that of vehicle-treated BTBR and B6 mice. The present findings taken together with past results suggest that treatment with a 5HT2A receptor antagonist may be effective in ameliorating RRBs in ASD.


Subject(s)
Fluorobenzenes/administration & dosage , Grooming/drug effects , Piperidines/administration & dosage , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Stereotyped Behavior/drug effects , Animals , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Motor Activity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...