Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 15(6): 1185-1196, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38377469

ABSTRACT

A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.


Subject(s)
Glutamic Acid , Serotonin , Mice , Animals , Serotonin/pharmacology , Glutamic Acid/pharmacology , Fluoxetine/pharmacology , Raphe Nuclei , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...