Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 42(3): 510-23, 2014.
Article in English | MEDLINE | ID: mdl-23674390

ABSTRACT

We conducted a retrospective analysis of publicly available preclinical toxicology studies with erythropoiesis-stimulating agents (ESAs) to examine common adverse events in rats, Beagle dogs, and cynomolgus monkeys. Mortality and/or thrombotic events were reported sporadically in a subset of studies and attributed to the high hematocrit (HCT) achieved in the animals. However, similarly high HCT was achieved in both high-dose and low-dose groups, but there were no reported adverse events in the low-dose group suggesting HCT was not the sole contributing factor leading to toxicity. Our analysis indicated that increased dose, dose frequency, and dosing duration in addition to high HCT contributed to mortality and thrombosis. To further evaluate this relationship, the incidence of toxicities was compared in rats administered an experimental hyperglycosylated analog of recombinant human erythropoietin (AMG 114) at varying dosing schedules in 1-month toxicity studies. The incidence of mortality and thrombotic events increased in higher dose groups and when dosed more frequently, despite a similarly high HCT in all animals. The results from the investigative study and retrospective analysis demonstrate that ESA-related toxicities in preclinical species are associated with dose level, dose frequency, and dosing duration, and not solely dependent upon a high HCT.


Subject(s)
Hematinics , Hematocrit , Thrombosis/chemically induced , Animals , Biomedical Research , Dogs , Erythropoiesis/drug effects , Erythropoietin/administration & dosage , Erythropoietin/adverse effects , Erythropoietin/toxicity , Heart Valve Diseases , Hematinics/administration & dosage , Hematinics/adverse effects , Hematinics/toxicity , Humans , Macaca fascicularis , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/toxicity , Retrospective Studies , Stomach Neoplasms
2.
Toxicol Pathol ; 42(3): 524-39, 2014.
Article in English | MEDLINE | ID: mdl-23674391

ABSTRACT

We recently reported results that erythropoiesis-stimulating agent (ESA)-related thrombotic toxicities in preclinical species were not solely dependent on a high hematocrit (HCT) but also associated with increased ESA dose level, dose frequency, and dosing duration. In this article, we conclude that sequelae of an increased magnitude of ESA-stimulated erythropoiesis potentially contributed to thrombosis in the highest ESA dose groups. The results were obtained from two investigative studies we conducted in Sprague-Dawley rats administered a low (no thrombotic toxicities) or high (with thrombotic toxicities) dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114), 3 times weekly for up to 9 days or for 1 month. Despite similarly increased HCT at both dose levels, animals in the high-dose group had an increased magnitude of erythropoiesis measured by spleen weights, splenic erythropoiesis, and circulating reticulocytes. Resulting prothrombotic risk factors identified predominantly or uniquely in the high-dose group were higher numbers of immature reticulocytes and nucleated red blood cells in circulation, severe functional iron deficiency, and increased intravascular destruction of iron-deficient reticulocyte/red blood cells. No thrombotic events were detected in rats dosed up to 9 days suggesting a sustained high HCT is a requisite cofactor for development of ESA-related thrombotic toxicities.


Subject(s)
Erythropoiesis/drug effects , Erythropoietin/pharmacology , Erythropoietin/toxicity , Recombinant Proteins/pharmacology , Recombinant Proteins/toxicity , Analysis of Variance , Animals , Blood Platelets , Erythrocytes , Erythropoietin/administration & dosage , Hematocrit , Humans , Iron/blood , Iron/metabolism , Male , Polycythemia , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Reticulocytes
3.
Toxicol Pathol ; 42(3): 540-54, 2014.
Article in English | MEDLINE | ID: mdl-23674392

ABSTRACT

We previously reported an increased incidence of thrombotic toxicities in Sprague-Dawley rats administered the highest dose level of a hyperglycosylated analog of recombinant human erythropoietin (AMG 114) for 1 month as not solely dependent on high hematocrit (HCT). Thereafter, we identified increased erythropoiesis as a prothrombotic risk factor increased in the AMG 114 high-dose group with thrombotic toxicities, compared to a low-dose group with no toxicities but similar HCT. Here, we identified pleiotropic cytokines as prothrombotic factors associated with AMG 114 dose level. Before a high HCT was achieved, rats in the AMG 114 high, but not the low-dose group, had imbalanced hemostasis (increased von Willebrand factor and prothrombin time, decreased antithrombin III) coexistent with cytokines implicated in thrombosis: monocyte chemotactic protein 1 (MCP-1), MCP-3, tissue inhibitor of metalloproteinases 1, macrophage inhibitory protein-2, oncostatin M, T-cell-specific protein, stem cell factor, vascular endothelial growth factor, and interleukin-11. While no unique pathway to erythropoiesis stimulating agent-related thrombosis was identified, cytokines associated with increased erythropoiesis contributed to a prothrombotic intravascular environment in the AMG 114 high-dose group, but not in lower dose groups with a similar high HCT.


Subject(s)
Cytokines/blood , Cytokines/metabolism , Erythropoiesis/drug effects , Erythropoietin/pharmacology , Recombinant Proteins/pharmacology , Animals , Erythropoietin/chemistry , Hematocrit , Humans , Male , Polycythemia , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Reticulocytes , Thrombosis
4.
EMBO J ; 31(2): 257-66, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22179699

ABSTRACT

Hybrid organisms may fail to develop, be sterile or they may be more vigorous than either of the parents. Examples of hybrid vigour or hybrid necrosis in the F1 are often not inherited stably in subsequent generations if they are associated with overdominance. There can also be transgressive phenotypes that are inherited stably in these later generations, but the underlying mechanisms are not well understood. Here we have investigated the possibility that stable transgressive phenotypes in the progeny of crosses between cultivated tomato (Solanum lycopersicum cv. M82) and a wild relative (Solanum pennellii, accession LA716) are associated with micro or small interfering(si) RNAs. We identified loci from which these small(s)RNAs were more abundant in hybrids than in either parent and we show that accumulation of such transgressive sRNAs correlated with suppression of the corresponding target genes. In one instance this effect was associated with hypermethylation of the corresponding genomic DNA. Our results illustrate a potential role of transgressive sRNAs in plant breeding and in natural evolution with wild plants.


Subject(s)
DNA Methylation , DNA, Plant/genetics , Gene Expression Regulation, Plant/genetics , Hybrid Vigor/genetics , RNA Interference , RNA, Plant/genetics , RNA, Small Interfering/genetics , Solanum lycopersicum/genetics , Crosses, Genetic , Epigenesis, Genetic , Genes, Plant , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Phenotype , Phylogeny , RNA, Double-Stranded/genetics , Sequence Alignment , Solanum/genetics
5.
Plant Cell ; 22(2): 321-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20173091

ABSTRACT

Argonaute (AGO) effectors of RNA silencing bind small RNA (sRNA) molecules and mediate mRNA cleavage, translational repression, or epigenetic DNA modification. In many organisms, these targeting mechanisms are devolved to different products of AGO multigene families. To investigate the basis of AGO functional diversification, we characterized three closely related Arabidopsis thaliana AGOs (AGO4, AGO6, and AGO9) implicated in RNA-directed DNA methylation. All three AGOs bound 5' adenosine 24-nucleotide sRNAs, but each exhibited different preferences for sRNAs from different heterochromatin-associated loci. This difference was reduced when AGO6 and AGO9 were expressed from the AGO4 promoter, indicating that the functional diversification was partially due to differential expression of the corresponding genes. However, the AGO4-directed pattern of sRNA accumulation and DNA methylation was not fully recapitulated with AGO6 or AGO9 expressed from the AGO4 promoter. Here, we show that sRNA length and 5' nucleotide do not account for the observed functional diversification of these AGOs. Instead, the selectivity of sRNA binding is determined by the coincident expression of the AGO and sRNA-generating loci, and epigenetic modification is influenced by interactions between the AGO protein and the different target loci. These findings highlight the importance of tissue specificity and AGO-associated proteins in influencing epigenetic modifications.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA Methylation , Gene Expression Regulation, Plant , RNA, Plant/genetics , Arabidopsis Proteins/metabolism , Genome, Plant
6.
Nature ; 460(7252): 283-6, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19494814

ABSTRACT

Most eukaryotes produce small RNA (sRNA) mediators of gene silencing that bind to Argonaute proteins and guide them, by base pairing, to an RNA target. MicroRNAs (miRNAs) that normally target messenger RNAs for degradation or translational arrest are the best-understood class of sRNAs. However, in Arabidopsis thaliana flowers, miRNAs account for only 5% of the sRNA mass and less than 0.1% of the sequence complexity. The remaining sRNAs form a complex population of more than 100,000 different small interfering RNAs (siRNAs) transcribed from thousands of loci. The biogenesis of most of the siRNAs in Arabidopsis are dependent on RNA polymerase IV (PolIV), a homologue of DNA-dependent RNA polymerase II. A subset of these PolIV-dependent (p4)-siRNAs are involved in stress responses, and others are associated with epigenetic modifications to DNA or chromatin; however, the biological role is not known for most of them. Here we show that the predominant phase of p4-siRNA accumulation is initiated in the maternal gametophyte and continues during seed development. Expression of p4-siRNAs in developing endosperm is specifically from maternal chromosomes. Our results provide the first evidence for a link between genomic imprinting and RNA silencing in plants.


Subject(s)
Arabidopsis/embryology , Arabidopsis/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Plant , RNA, Plant/genetics , RNA, Small Interfering/genetics , Seeds/genetics , Arabidopsis/enzymology , DNA-Directed RNA Polymerases/genetics , Genome, Plant/genetics , Genomic Imprinting , RNA Interference , RNA, Plant/biosynthesis , RNA, Small Interfering/biosynthesis , Seeds/embryology , Seeds/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...