Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Combust Flame ; 174: 16-24, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28989179

ABSTRACT

Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels. While CO can be desirable in some syngas processes, it is a dangerous emission from fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction prevents complete oxidation of fuel to carbon dioxide and water, particularly when the reaction is interrupted by interaction with relatively cool solid boundaries. This research examines the physico-thermo-chemical processes responsible for carbon monoxide release from a small laminar non-premixed methane/air flame impinging on a nearby surface. We measure the changes in CO emission as correlated with variations in flame structure observed using planar laser induced fluorescence (PLIF of OH and 2-photon CO), and two-line OH PLIF thermometry, as a function of burner-to-plate distance. In particular, this work combines the use of OH and CO PLIF, and PLIF thermometry to describe the relative locations of the CO rich region, the peak heat release zone as indicated by chemiluminescence and OH gradients, and the extended oxidative zone in the impinging flames. The results show that CO release correlates strongly with stagnating flow-driven changes in the location and extent of high concentration regions of OH in surface-impinging diffusion flames.

2.
Ann N Y Acad Sci ; 1077: 585-601, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17124146

ABSTRACT

Electric fields applied to combustion plasmas can be used to manipulate the thermofluid flow field to reduce buoyant forces and, hence, convection in locations near and within the flame. The resulting flow field is similar to that which is obtained in microgravity. Previous work has shown that buoyancy is modified in a non-premixed methane-air capillary flame when it burns in a capillary-to-plane configuration and an electric field is applied, and that regions of neutral or microbuoyancy exist, as indicated by the examined temperature and oxidizer profiles. The aim of this article is to examine in more detail this microbuoyancy condition and the coupling between the ion wind and resulting thermofluid flow field. To this end, the voltage-current characteristics (VCC) of CH4, C2H2, C2H4, C2H6, and C3H8 are measured and compared. Soot generated in the C2H(X) and propane flames lead to a hysteresis in the VCC curve whereby increased sooting leads to lower ion currents at constant flow rates and applied potentials. Buoyancy regimes for these flames in this configuration are determined. Methane can achieve the highest flow rate without sooting at the microbuoyant condition, and does not exhibit hysteresis in the VCC for the flow rates examined here. Furthermore, in this geometry, the microbuoyant condition for methane is found to coincide with ion current saturation when the capillary-to-plane distance is varied. These results allow for several simplifications to be made when modeling the flame at these conditions: the imposition of a spherical flame boundary with known ion current, and negligible recombination in the domain.

3.
Am Ind Hyg Assoc J ; 59(6): 393-402, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9670469

ABSTRACT

The particle transport characteristics of two ventilation configurations commonly used in hospital operating rooms (ORs), cross-flow and impinging-flow ventilation, were investigated. The computational fluid dynamics software FLUENT was used to simulate turbulent airflow with mixed convection in a three-dimensional, rectangular OR. Two OR personnel, a patient, OR spotlights, an anesthetics cart, and an operating table were represented in the room. Heat loads from the personnel, patient, and lights affected the airflow through buoyancy. Particles produced at the operation site with various sizes and initial conditions were tracked through the room. A stochastic model was used to include the random effects of turbulence on particle trajectories. Simulation results show that heat loads from the personnel, patient, and OR spotlights had an important effect on the airflow through natural convection. Particle trajectories were influenced greatly by the flow field structure, particle launch position, and turbulence in the flow, and somewhat by particle size. However, particle paths were insensitive to the launch velocity. Virtually identical trajectories were obtained for particles with launch velocities ranging from 0 to 1 m/sec in magnitude. Changes in ventilation configuration dramatically affected particle transport. The cross-flow ventilation configuration performed better, based on the criteria of removing particles from the breathing zone of room occupants. Proper flow field design and contaminant source placement can be used to control particle transport. Numerical simulations allow quick and inexpensive comparisons between room designs and provide details about airflow and contaminant transport.


Subject(s)
Aerosols/analysis , Air Pollutants, Occupational/analysis , Air Pollution, Indoor/analysis , Environment, Controlled , Interior Design and Furnishings , Operating Rooms , Computer Simulation , Humans , Numerical Analysis, Computer-Assisted , Particle Size , Stochastic Processes
4.
Am Ind Hyg Assoc J ; 53(4): 232-6, 1992 Apr.
Article in English | MEDLINE | ID: mdl-1529915

ABSTRACT

A low-cost wind tunnel for aerosol studies has been designed, constructed, and evaluated for aerosol uniformity with 2- and 0.46-micron particles. A commercial nebulizer was used to produce the suspended test particles, and a custom-made, four-hole injector was used to introduce the aerosol into the wind tunnel. A commercially available optical particle counter measured the particle concentration. Performance tests of the velocity profile and particle concentration distribution at two flow rates showed that the system performs well for small particles.


Subject(s)
Aerosols , Environment, Controlled , Environmental Exposure , Respiration/physiology , Aerosols/administration & dosage , Air Movements , Diffusion , Equipment Design , Humans , Particle Size , Rheology , Wind
5.
Appl Opt ; 30(19): 2672-4, 1991 Jul 01.
Article in English | MEDLINE | ID: mdl-20700260

ABSTRACT

We describe measurements using coherent anti-Stokes Raman scattering (CARS) of the local temperature field near a combusting droplet stream. Synchronizing the CARS measurements with the droplets in the stream permits correlations between the temperature field and the droplet position.

6.
Appl Opt ; 29(21): 3150-9, 1990 Jul 20.
Article in English | MEDLINE | ID: mdl-20567390

ABSTRACT

This research examines the potential for coherent anti-Stokes Raman scattering (CARS) to provide reliable gas temperature measurements in the presence of liquid droplets. The droplets cause dielectric breakdown by focusing the CARS laser beams. This breakdown produces a plasma that can disrupt or obscure the CARS signal. Specifically, we examine the influence of laser induced breakdown on the CARS signal, and we determine the importance of droplet position relative to the CARS focal volume and droplet concentration on the reliability of CARS temperature measurements in droplet-laden flows. In addition, we propose a reliable data reduction procedure to minimize the disruptive influence of laser induced breakdown on CARS temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...