Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 19(12): e1011742, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127830

ABSTRACT

The sustainability of marine communities is critical for supporting many biophysical processes that provide ecosystem services that promote human well-being. It is expected that anthropogenic disturbances such as climate change and human activities will tend to create less energetically-efficient ecosystems that support less biomass per unit energy flow. It is debated, however, whether this expected development should translate into bottom-heavy (with small basal species being the most abundant) or top-heavy communities (where more biomass is supported at higher trophic levels with species having larger body sizes). Here, we combine ecological theory and empirical data to demonstrate that full marine protection promotes shifts towards top-heavy energetically-efficient structures in marine communities. First, we use metabolic scaling theory to show that protected communities are expected to display stronger top-heavy structures than disturbed communities. Similarly, we show theoretically that communities with high energy transfer efficiency display stronger top-heavy structures than communities with low transfer efficiency. Next, we use empirical structures observed within fully protected marine areas compared to disturbed areas that vary in stress from thermal events and adjacent human activity. Using a nonparametric causal-inference analysis, we find a strong, positive, causal effect between full marine protection and stronger top-heavy structures. Our work corroborates ecological theory on community development and provides a quantitative framework to study the potential restorative effects of different candidate strategies on protected areas.


Subject(s)
Climate Change , Ecosystem , Humans , Biomass , Body Size
2.
Ecology ; 104(3): e3922, 2023 03.
Article in English | MEDLINE | ID: mdl-36415050

ABSTRACT

Plants and their insect herbivores have been a dominant component of the terrestrial ecological landscape for the past 410 million years and feature intricate evolutionary patterns and co-dependencies. A complex systems perspective allows for both detailed resolution of these evolutionary relationships as well as comparison and synthesis across systems. Using proxy data of insect herbivore damage (denoted by the damage type or DT) preserved on fossil leaves, functional bipartite network representations provide insights into how plant-insect associations depend on geological time, paleogeographical space, and environmental variables such as temperature and precipitation. However, the metrics measured from such networks are prone to sampling bias. Such sensitivity is of special concern for plant-DT association networks in paleontological settings where sampling effort is often severely limited. Here, we explore the sensitivity of functional bipartite network metrics to sampling intensity and identify sampling thresholds above which metrics appear robust to sampling effort. Across a broad range of sampling efforts, we find network metrics to be less affected by sampling bias and/or sample size than richness metrics, which are routinely used in studies of fossil plant-DT interactions. These results provide reassurance that cross-comparisons of plant-DT networks offer insights into network structure and function and support their widespread use in paleoecology. Moreover, these findings suggest novel opportunities for using plant-DT networks in neontological terrestrial ecology to understand functional aspects of insect herbivory across geological time, environmental perturbations, and geographic space.


Subject(s)
Benchmarking , Insecta , Animals , Selection Bias , Plants , Plant Leaves , Herbivory
3.
Trends Ecol Evol ; 37(11): 976-984, 2022 11.
Article in English | MEDLINE | ID: mdl-36055892

ABSTRACT

We propose defining a field of research called 'archaeoecology' that examines the past ~60 000 years of interactions between humans and ecosystems to better understand the human place within them. Archaeoecology explicitly integrates questions, data, and approaches from archaeology and ecology, and coalesces recent and future studies that demonstrate the usefulness of integrating archaeological, environmental, and ecological data for understanding the past. Defining a subfield of archaeoecology, much as the related fields of environmental archaeology and palaeoecology have emerged as distinct areas of research, provides a clear intellectual context for helping us to understand the trajectory of human-ecosystem interactions in the past, during the present, and into the future.


Subject(s)
Archaeology , Ecosystem , Humans
4.
Sustain Sci ; 15(6): 1723-1733, 2020.
Article in English | MEDLINE | ID: mdl-32837574

ABSTRACT

Urgent sustainability challenges require effective leadership for inter- and trans-disciplinary (ITD) institutions. Based on the diverse experiences of 20 ITD institutional leaders and specific case studies, this article distills key lessons learned from multiple pathways to building successful programs. The lessons reflect both the successes and failures our group has experienced, to suggest how to cultivate appropriate and effective leadership, and generate the resources necessary for leading ITD programs. We present two contrasting pathways toward ITD organizations: one is to establish a new organization and the other is to merge existing organizations. We illustrate how both benefit from a real-world focus, with multiple examples of trajectories of ITD organizations. Our diverse international experiences demonstrate ways to cultivate appropriate leadership qualities and skills, especially the ability to create and foster vision beyond the status quo; collaborative leadership and partnerships; shared culture; communications to multiple audiences; appropriate monitoring and evaluation; and perseverance. We identified five kinds of resources for success: (1) intellectual resources; (2) institutional policies; (3) financial resources; (4) physical infrastructure; and (5) governing boards. We provide illustrations based on our extensive experience in supporting success and learning from failure, and provide a framework that articulates the major facets of leadership in inter- and trans-disciplinary organizations: learning, supporting, sharing, and training.

5.
Sci Rep ; 6: 21179, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26884149

ABSTRACT

There is a nearly 10,000-year history of human presence in the western Gulf of Alaska, but little understanding of how human foragers integrated into and impacted ecosystems through their roles as hunter-gatherers. We present two highly resolved intertidal and nearshore food webs for the Sanak Archipelago in the eastern Aleutian Islands and use them to compare trophic roles of prehistoric humans to other species. We find that the native Aleut people played distinctive roles as super-generalist and highly-omnivorous consumers closely connected to other species. Although the human population was positioned to have strong effects, arrival and presence of Aleut people in the Sanak Archipelago does not appear associated with long-term extinctions. We simulated food web dynamics to explore to what degree introducing a species with trophic roles like those of an Aleut forager, and allowing for variable strong feeding to reflect use of hunting technology, is likely to trigger extinctions. Potential extinctions decreased when an invading omnivorous super-generalist consumer focused strong feeding on decreasing fractions of its possible resources. This study presents the first assessment of the structural roles of humans as consumers within complex ecological networks, and potential impacts of those roles and feeding behavior on associated extinctions.


Subject(s)
Aquatic Organisms , Ecosystem , Feeding Behavior , Food Chain , Alaska , Animals , Humans , Islands
6.
Ecol Evol ; 5(17): 3769-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26380704

ABSTRACT

This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling.

8.
Trends Ecol Evol ; 30(1): 9-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25481619

ABSTRACT

The primary reasons for conducting fundamental research are satisfying curiosity, acquiring knowledge, and achieving understanding. Here we develop why we believe it is essential to promote basic ecological research, despite increased impetus for ecologists to conduct and present their research in the light of potential applications. This includes the understanding of our environment, for intellectual, economical, social, and political reasons, and as a major source of innovation. We contend that we should focus less on short-term, objective-driven research and more on creativity and exploratory analyses, quantitatively estimate the benefits of fundamental research for society, and better explain the nature and importance of fundamental ecology to students, politicians, decision makers, and the general public. Our perspective and underlying arguments should also apply to evolutionary biology and to many of the other biological and physical sciences.


Subject(s)
Ecology/economics , Research/economics , Research Design
9.
Proc Biol Sci ; 281(1782): 20133280, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24648225

ABSTRACT

Generalities of food web structure have been identified for extant ecosystems. However, the trophic organization of ancient ecosystems is unresolved, as prior studies of fossil webs have been limited by low-resolution, high-uncertainty data. We compiled highly resolved, well-documented feeding interaction data for 700 taxa from the 48 million-year-old latest early Eocene Messel Shale, which contains a species assemblage that developed after an interval of protracted environmental and biotal change during and following the end-Cretaceous extinction. We compared the network structure of Messel lake and forest food webs to extant webs using analyses that account for scale dependence of structure with diversity and complexity. The Messel lake web, with 94 taxa, displays unambiguous similarities in structure to extant webs. While the Messel forest web, with 630 taxa, displays differences compared to extant webs, they appear to result from high diversity and resolution of insect-plant interactions, rather than substantive differences in structure. The evidence presented here suggests that modern trophic organization developed along with the modern Messel biota during an 18 Myr interval of dramatic post-extinction change. Our study also has methodological implications, as the Messel forest web analysis highlights limitations of current food web data and models.


Subject(s)
Food Chain , Fossils , Animals , Biota , Ecosystem , Forests , Lakes , Models, Theoretical
10.
PLoS Biol ; 11(6): e1001579, 2013.
Article in English | MEDLINE | ID: mdl-23776404

ABSTRACT

Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites "dominate" food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.


Subject(s)
Biodiversity , Food Chain , Parasites/physiology , Animals , Linear Models , Models, Biological , Probability , Species Specificity
11.
Trends Ecol Evol ; 27(12): 689-97, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22959162

ABSTRACT

The global biodiversity crisis concerns not only unprecedented loss of species within communities, but also related consequences for ecosystem function. Community ecology focuses on patterns of species richness and community composition, whereas ecosystem ecology focuses on fluxes of energy and materials. Food webs provide a quantitative framework to combine these approaches and unify the study of biodiversity and ecosystem function. We summarise the progression of food-web ecology and the challenges in using the food-web approach. We identify five areas of research where these advances can continue, and be applied to global challenges. Finally, we describe what data are needed in the next generation of food-web studies to reconcile the structure and function of biodiversity.


Subject(s)
Biodiversity , Food Chain , Animals , Models, Biological , Plants
12.
Philos Trans R Soc Lond B Biol Sci ; 367(1605): 2903-12, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23007078

ABSTRACT

One important aspect of climate change is the increase in average temperature, which will not only have direct physiological effects on all species but also indirectly modifies abundances, interaction strengths, food-web topologies, community stability and functioning. In this theme issue, we highlight a novel pathway through which warming indirectly affects ecological communities: by changing their size structure (i.e. the body-size distributions). Warming can shift these distributions towards dominance of small- over large-bodied species. The conceptual, theoretical and empirical research described in this issue, in sum, suggests that effects of temperature may be dominated by changes in size structure, with relatively weak direct effects. For example, temperature effects via size structure have implications for top-down and bottom-up control in ecosystems and may ultimately yield novel communities. Moreover, scaling up effects of temperature and body size from physiology to the levels of populations, communities and ecosystems may provide a crucially important mechanistic approach for forecasting future consequences of global warming.


Subject(s)
Body Size/physiology , Climate Change , Ecosystem , Animals , Carbon Dioxide/physiology , Extinction, Biological , Feeding Behavior/physiology , Food Chain , Nitrogen/metabolism , Population Density , Population Dynamics , Predatory Behavior , Temperature
13.
Ecology ; 93(8): 1765-71, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22928404

ABSTRACT

Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologically "track" climate change may be at a disadvantage if their growth becomes limited by missed interactions with mutualists, or a shorter growing season relative to earlier-active competitors. Here, we set out to test the hypothesis that phenological sensitivity could be used to predict species performance in a warming climate, by synthesizing results across terrestrial warming experiments. We assembled data for 57 species across 24 studies where flowering or vegetative phenology was matched with a measure of species performance. Performance metrics included biomass, percent cover, number of flowers, or individual growth. We found that species that advanced their phenology with warming also increased their performance, whereas those that did not advance tended to decline in performance with warming. This indicates that species that cannot phenologically "track" climate may be at increased risk with future climate change, and it suggests that phenological monitoring may provide an important tool for setting future conservation priorities.


Subject(s)
Climate Change , Ecosystem , Plant Development , Plants/classification , California , Demography , Models, Biological , Species Specificity
14.
Trends Ecol Evol ; 27(8): 428-35, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22613457

ABSTRACT

Ecological and evolutionary physiology has traditionally focused on one aspect of physiology at a time. Here, we discuss the implications of considering physiological regulatory networks (PRNs) as integrated wholes, a perspective that reveals novel roles for physiology in organismal ecology and evolution. For example, evolutionary response to changes in resource abundance might be constrained by the role of dietary micronutrients in immune response regulation, given a particular pathogen environment. Because many physiological components impact more than one process, organismal homeostasis is maintained, individual fitness is determined and evolutionary change is constrained (or facilitated) by interactions within PRNs. We discuss how PRN structure and its system-level properties could determine both individual performance and patterns of physiological evolution.


Subject(s)
Adaptation, Physiological , Biological Evolution , Ecological and Environmental Phenomena , Genetic Fitness , Homeostasis , Models, Biological , Phenotype
15.
Ecol Lett ; 13(12): 1546-59, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20937057

ABSTRACT

Species coexistence within ecosystems and the stability of patterns of temporal changes in population sizes are central topics in ecological theory. In the last decade, adaptive behaviour has been proposed as a mechanism of population stabilization. In particular, widely distributed adaptive trophic behaviour (ATB), the fitness-enhancing changes in individuals' feeding-related traits due to variation in their trophic environment, may play a key role in modulating the dynamics of feeding relationships within natural communities. In this article, we review and synthesize models and results from theoretical research dealing with the consequences of ATB on the structure and dynamics of complex food webs. We discuss current approaches, point out limitations, and consider questions ripe for future research. In spite of some differences in the modelling and analytic approaches, there are points of convergence: (1) ATB promotes the complex structure of ecological networks, (2) ATB increases the stability of their dynamics, (3) ATB reverses May's negative complexity-stability relationship, and (4) ATB provides resilience and resistance of networks against perturbations. Current knowledge supports ATB as an essential ingredient for models of community dynamics, and future research that incorporates ATB will be well positioned to address questions important for basic ecological research and its applications.


Subject(s)
Adaptation, Physiological , Behavior, Animal/physiology , Food Chain , Models, Biological , Animals , Population Dynamics
16.
Philos Trans R Soc Lond B Biol Sci ; 364(1524): 1711-23, 2009 Jun 27.
Article in English | MEDLINE | ID: mdl-19451122

ABSTRACT

Species loss in ecosystems can lead to secondary extinctions as a result of consumer-resource relationships and other species interactions. We compare levels of secondary extinctions in communities generated by four structural food-web models and a fifth null model in response to sequential primary species removals. We focus on various aspects of food-web structural integrity including robustness, community collapse and threshold periods, and how these features relate to assumptions underlying different models, different species loss sequences and simple measures of diversity and complexity. Hierarchical feeding, a fundamental characteristic of food-web structure, appears to impose a cost in terms of robustness and other aspects of structural integrity. However, exponential-type link distributions, also characteristic of more realistic models, generally confer greater structural robustness than the less skewed link distributions of less realistic models. In most cases for the more realistic models, increased robustness and decreased levels of web collapse are associated with increased diversity, measured as species richness S, and increased complexity, measured as connectance C. These and other results, including a surprising sensitivity of more realistic model food webs to loss of species with few links to other species, are compared with prior work based on empirical food-web data.


Subject(s)
Extinction, Biological , Food Chain , Models, Biological , Biodiversity , Ecology/methods , Ecosystem , Research Design/statistics & numerical data , Species Specificity
17.
Ecology ; 90(1): 278-82, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19294932

ABSTRACT

The covariance among a range of 20 network structural properties of food webs plus net primary productivity was assessed for 14 published food webs using principal components analysis. Three primary components explained 84% of the variability in the data sets, suggesting substantial covariance among the properties employed in the literature. The first dimension explained 48% of the variance and could be ascribed to connectance, covarying significantly with the proportion of intermediate species and characteristic path length. The second dimension explained 19% and was related to trophic species richness. The third axis explained 17% and was related to ecosystem net primary productivity. A distinct opposite clustering of connectance, the proportion of intermediate species, and mean trophic level vs. the proportion of top and basal species and path length suggests a dichotomy in food-web structure. Food webs appear either clustered and highly interconnected or elongated with fewer links.


Subject(s)
Food Chain , Models, Biological
18.
Proc Natl Acad Sci U S A ; 106(1): 187-91, 2009 Jan 06.
Article in English | MEDLINE | ID: mdl-19114659

ABSTRACT

Darwin's classic image of an "entangled bank" of interdependencies among species has long suggested that it is difficult to predict how the loss of one species affects the abundance of others. We show that for dynamical models of realistically structured ecological networks in which pair-wise consumer-resource interactions allometrically scale to the (3/4) power--as suggested by metabolic theory--the effect of losing one species on another can be predicted well by simple functions of variables easily observed in nature. By systematically removing individual species from 600 networks ranging from 10-30 species, we analyzed how the strength of 254,032 possible pair-wise species interactions depended on 90 stochastically varied species, link, and network attributes. We found that the interaction strength between a pair of species is predicted well by simple functions of the two species' biomasses and the body mass of the species removed. On average, prediction accuracy increases with network size, suggesting that greater web complexity simplifies predicting interaction strengths. Applied to field data, our model successfully predicts interactions dominated by trophic effects and illuminates the sign and magnitude of important nontrophic interactions.


Subject(s)
Ecology , Food Chain , Population Dynamics , Animals , Biomass , Body Size , Extinction, Biological , Feeding Behavior , Models, Theoretical
19.
PLoS Biol ; 6(4): e102, 2008 Apr 29.
Article in English | MEDLINE | ID: mdl-18447582

ABSTRACT

A rich body of empirically grounded theory has developed about food webs--the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple "niche model," which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences.


Subject(s)
Food Chain , Fossils , Animals , Computer Simulation , Ecosystem , Feeding Behavior , Predatory Behavior , Species Specificity
20.
Ecol Lett ; 11(6): 533-46, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18462196

ABSTRACT

Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.


Subject(s)
Disease Vectors , Food Chain , Models, Biological , Parasites/physiology , Animals , Host-Parasite Interactions , Isotope Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...