Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 16(3): 386-406, 2017 03.
Article in English | MEDLINE | ID: mdl-28062796

ABSTRACT

Approximately 800,000 leukemia and lymphoma cases are diagnosed worldwide each year. Burkitt's lymphoma (BL) and chronic lymphocytic leukemia (CLL) are examples of contrasting B-cell cancers; BL is a highly aggressive lymphoid tumor, frequently affecting children, whereas CLL typically presents as an indolent, slow-progressing leukemia affecting the elderly. The B-cell-specific overexpression of the myc and TCL1 oncogenes in mice induce spontaneous malignancies modeling BL and CLL, respectively. Quantitative mass spectrometry proteomics and isobaric labeling were employed to examine the biology underpinning contrasting Eµ-myc and Eµ-TCL1 B-cell tumors. Additionally, the plasma proteome was evaluated using subproteome enrichment to interrogate biomarker emergence and the systemic effects of tumor burden. Over 10,000 proteins were identified (q<0.01) of which 8270 cellular and 2095 plasma proteins were quantitatively profiled. A common B-cell tumor signature of 695 overexpressed proteins highlighted ribosome biogenesis, cell-cycle promotion and chromosome segregation. Eµ-myc tumors overexpressed several methylating enzymes and underexpressed many cytoskeletal components. Eµ-TCL1 tumors specifically overexpressed ER stress response proteins and signaling components in addition to both subunits of the interleukin-5 (IL5) receptor. IL5 treatment promoted Eµ-TCL1 tumor proliferation, suggesting an amplification of IL5-induced AKT signaling by TCL1. Tumor plasma contained a substantial tumor lysis signature, most prominent in Eµ-myc plasma, whereas Eµ-TCL1 plasma contained signatures of immune-response, inflammation and microenvironment interactions, with putative biomarkers in early-stage cancer. These findings provide a detailed characterization of contrasting B-cell tumor models, identifying common and specific tumor mechanisms. Integrated plasma proteomics allowed the dissection of a systemic response and a tumor lysis signature present in early- and late-stage cancers, respectively. Overall, this study suggests common B-cell cancer signatures exist and illustrates the potential of the further evaluation of B-cell cancer subtypes by integrative proteomics.


Subject(s)
Biomarkers, Tumor/analysis , Burkitt Lymphoma/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Burkitt Lymphoma/genetics , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mass Spectrometry/methods , Mice , Mice, Transgenic
2.
J Immunol ; 195(11): 5503-16, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26512139

ABSTRACT

FcγRs are key regulators of the immune response, capable of binding to the Fc portion of IgG Abs and manipulating the behavior of numerous cell types. Through a variety of receptors, isoforms, and cellular expression patterns, they are able to fine-tune and direct appropriate responses. Furthermore, they are key determinants of mAb immunotherapy, with mAb isotype and FcγR interaction governing therapeutic efficacy. Critical to understanding the biology of this complex family of receptors are reagents that are robust and highly specific for each receptor. In this study, we describe the development and characterization of mAb panels specific for both mouse and human FcγR for use in flow cytometry, immunofluorescence, and immunocytochemistry. We highlight key differences in expression between the two species and also patterns of expression that will likely impact on immunotherapeutic efficacy and translation of therapeutic agents from mouse to clinic.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoglobulin G/immunology , Receptors, IgG/biosynthesis , Receptors, IgG/immunology , Animals , Bone Marrow/immunology , CHO Cells , Cell Line , Cricetinae , Cricetulus , Flow Cytometry , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Palatine Tonsil/immunology , Protein Isoforms/genetics , Protein Isoforms/immunology , Rats , Rats, Wistar , Spleen/immunology
3.
Eur J Immunol ; 42(1): 256-63, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22002320

ABSTRACT

A major contributing factor to the final magnitude and breadth of CD8(+) T-cell responses to complex antigens is immunodomination, where CD8(+) T cells recognizing their cognate ligand inhibit the proliferation of other CD8(+) T cells engaged with the same APC. In this study, we examined how the half-life of cell surface peptide-MHC class I complexes influences this phenomenon. We found that primary CD8(+) T-cell responses to DNA vaccines in mice are shaped by competition among responding CD8(+) T cells for nonspecific stimuli early after activation and prior to cell division. The susceptibility of CD8(+) T cells to 'domination' was a direct correlate of higher kinetic stability of the competing CD8(+) T-cell cognate ligand. When high affinity competitive CD8(+) T cells were deleted by self-antigen expression, competition was abrogated. These findings show, for the first time to our knowledge, the existence of regulatory mechanisms that direct the responding CD8(+) T-cell repertoire toward epitopes with high-stability interactions with MHC class I molecules. They also provide an insight into factors that facilitate CD8(+) T-cell coexistence, with important implications for vaccine design and delivery.


Subject(s)
Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Vaccines, DNA/immunology , Animals , Antigen-Presenting Cells/cytology , CD8-Positive T-Lymphocytes/cytology , Epitopes, T-Lymphocyte/immunology , Half-Life , Immunization , Immunodominant Epitopes/immunology , Kinetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...