Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 3138, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542447

ABSTRACT

Liquid biopsy testing utilising Next Generation Sequencing (NGS) is rapidly moving towards clinical adoption for personalised oncology. However, before NGS can fulfil its potential any novel testing approach must identify ways of reducing errors, allowing separation of true low-frequency mutations from procedural artefacts, and be designed to improve upon current technologies. Popular NGS technologies typically utilise two DNA capture approaches; PCR and ligation, which have known limitations and seem to have reached a development plateau with only small, stepwise improvements being made. To maximise the ultimate utility of liquid biopsy testing we have developed a highly versatile approach to NGS: Adaptor Template Oligo Mediated Sequencing (ATOM-Seq). ATOM-Seq's strengths and versatility avoid the major limitations of both PCR- and ligation-based approaches. This technology is ligation free, simple, efficient, flexible, and streamlined, and it offers novel advantages that make it perfectly suited for use on highly challenging clinical material. Using reference and clinical materials, we demonstrate detection of known SNVs down to allele frequencies of 0.1% using as little as 20-25 ng of cfDNA, as well as the ability to detect fusions from RNA. We illustrate ATOM-Seq's suitability for clinical testing by showing high concordance rates between paired cfDNA and FFPE clinical samples.


Subject(s)
Circulating Tumor DNA/genetics , Colonic Neoplasms/diagnosis , High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/diagnosis , RNA, Neoplasm/genetics , Alleles , Base Sequence , Circulating Tumor DNA/blood , Colonic Neoplasms/blood , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , DNA Primers/chemical synthesis , DNA Primers/metabolism , Gene Frequency , Gene Library , Humans , Liquid Biopsy , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Polymorphism, Single Nucleotide , RNA, Neoplasm/blood , Sensitivity and Specificity
2.
Evodevo ; 9: 2, 2018.
Article in English | MEDLINE | ID: mdl-29423137

ABSTRACT

BACKGROUND: ETCHbox genes are eutherian-specific homeobox genes expressed during preimplantation development at a time when the first cell lineage decisions are being made. The mouse has an unusual repertoire of ETCHbox genes with several gene families lost in evolution and the remaining two, Crxos and Obox, greatly divergent in sequence and number. Each has undergone duplication to give a double homeodomain Crxos locus and a large cluster of over 60 Obox loci. The gene content differences between species raise important questions about how evolution can tolerate loss of genes implicated in key developmental events. RESULTS: We find that Crxos internal duplication occurred in the mouse lineage, while Obox duplication was stepwise, generating subgroups with distinct sequence and expression. Ectopic expression of three Obox genes and a Crxos transcript in primary mouse embryonic cells followed by transcriptome sequencing allowed investigation into their functional roles. We find distinct transcriptomic influences for different Obox subgroups and Crxos, including modulation of genes related to zygotic genome activation and preparation for blastocyst formation. Comparison with similar experiments performed using human homeobox genes reveals striking overlap between genes downstream of mouse Crxos and genes downstream of human ARGFX. CONCLUSIONS: Mouse Crxos and human ARGFX homeobox genes are paralogous rather than orthologous, yet they have evolved to regulate a common set of genes. This suggests there was compensation of function alongside gene loss through co-option of a different locus. Functional compensation by non-orthologous genes with dissimilar sequences is unusual but may indicate underlying distributed robustness. Compensation may be driven by the strong evolutionary pressure for successful early embryo development.

3.
Curr Med Chem ; 25(21): 2448-2464, 2018.
Article in English | MEDLINE | ID: mdl-29308734

ABSTRACT

Within the different applications of nanomedicine currently being developed, nanogene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carried out an organised and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review.


Subject(s)
Gene Transfer Techniques , Nanomedicine , Nanostructures/chemistry , Nanotechnology , Humans
4.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28978728

ABSTRACT

Analysis of genome sequences within a phylogenetic context can give insight into the mode and tempo of gene and protein evolution, including inference of gene ages. This can reveal whether new genes arose on particular evolutionary lineages and were recruited for new functional roles. Here, we apply MCL clustering with all-versus-all reciprocal BLASTP to identify and phylogenetically date 'Homology Groups' among vertebrate proteins. Homology Groups include new genes and highly divergent duplicate genes. Focusing on the origin of the placental mammals within the Eutheria, we identify 357 novel Homology Groups that arose on the stem lineage of Placentalia, 87 of which are deduced to play core roles in mammalian biology as judged by extensive retention in evolution. We find the human homologues of novel eutherian genes are enriched for expression in preimplantation embryo, brain, and testes, and enriched for functions in keratinization, reproductive development, and the immune system.


Subject(s)
Eutheria/genetics , Evolution, Molecular , Genome , Animals , Phylogeny
5.
Open Biol ; 7(4)2017 04.
Article in English | MEDLINE | ID: mdl-28446706

ABSTRACT

The NANOG homeobox gene plays a pivotal role in self-renewal and maintenance of pluripotency in human, mouse and other vertebrate embryonic stem cells, and in pluripotent cells of the blastocyst inner cell mass. There is a poorly studied and atypical homeobox locus close to the Nanog gene in some mammals which could conceivably be a cryptic paralogue of NANOG, even though the loci share only 20% homeodomain identity. Here we argue that this gene, NANOGNB (NANOG Neighbour), is an extremely divergent duplicate of NANOG that underwent radical sequence change in the mammalian lineage. Like NANOG, the NANOGNB gene is expressed in pre-implantation embryos of human and cow; unlike NANOG, NANOGNB expression is restricted to 8-cell and morula stages, preceding blastocyst formation. When expressed ectopically in adult cells, human NANOGNB elicits gene expression changes, including downregulation of a set of genes that have an expression pulse at the 8-cell stage of pre-implantation development. We conclude that gene duplication and massive sequence divergence in mammals generated a novel homeobox gene that acquired new developmental roles complementary to those of Nanog.


Subject(s)
Homeodomain Proteins/metabolism , Amino Acid Motifs , Animals , Blastocyst/cytology , Blastocyst/metabolism , Cattle , Chromosomes/genetics , Chromosomes/metabolism , Down-Regulation , Embryo Implantation , Embryo, Mammalian/metabolism , Homeodomain Proteins/classification , Homeodomain Proteins/genetics , Humans , Mice , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Phylogeny , Transcriptome , Up-Regulation
6.
Article in English | MEDLINE | ID: mdl-27994121

ABSTRACT

Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such 'asymmetric evolution' seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.


Subject(s)
Biological Evolution , Genes, Duplicate , Genes, Homeobox , Growth and Development , Animals , Evolution, Molecular
7.
BMC Dev Biol ; 16(1): 40, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27809766

ABSTRACT

BACKGROUND: Homeobox genes encode a diverse set of transcription factors implicated in a vast range of biological processes including, but not limited to, embryonic cell fate specification and patterning. Although numerous studies report expression of particular sets of homeobox genes, a systematic analysis of the tissue specificity of homeobox genes is lacking. RESULTS: Here we analyse publicly-available transcriptome data from human and mouse developmental stages, and adult human tissues, to identify groups of homeobox genes with similar expression patterns. We calculate expression profiles for 242 human and 278 mouse homeobox loci across a combination of 59 human and 12 mouse adult tissues, early and late developmental stages. This revealed 20 human homeobox genes with widespread expression, primarily from the TALE, CERS and ZF classes. Most homeobox genes, however, have greater tissue-specificity, allowing us to compile homeobox gene expression lists for neural tissues, immune tissues, reproductive and developmental samples, and for numerous organ systems. In mouse development, we propose four distinct phases of homeobox gene expression: oocyte to zygote; 2-cell; 4-cell to blastocyst; early to mid post-implantation. The final phase change is marked by expression of ANTP class genes. We also use these data to compare expression specificity between evolutionarily-based gene classes, revealing that ANTP, PRD, LIM and POU homeobox gene classes have highest tissue specificity while HNF, TALE, CUT and CERS are most widely expressed. CONCLUSIONS: The homeobox genes comprise a large superclass and their expression patterns are correspondingly diverse, although in a broad sense related to an evolutionarily-based classification. The ubiquitous expression of some genes suggests roles in general cellular processes; in contrast, most human homeobox genes have greater tissue specificity and we compile useful homeobox datasets for particular tissues, organs and developmental stages. The identification of a set of eutherian-specific homeobox genes peaking from human 8-cell to morula stages suggests co-option of new genes to new developmental roles in evolution.


Subject(s)
Gene Expression , Homeodomain Proteins/genetics , Animals , Cell Differentiation , Databases, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Humans , Mice , Organ Specificity , Tissue Distribution
8.
Sci Rep ; 6: 34664, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698463

ABSTRACT

Animals with trochophore larvae belong to Trochozoa, one of the main branches of Bilateria. In addition to exhibiting spiral cleavage and early cell fate determination, trochozoans typically undergo indirect development, which contributes to the most unique characteristics of their ontogeny. The indirect development of trochozoans has provoked discussion regarding the origin and evolution of marine larvae and is interesting from the perspective of phylogeny-ontogeny correspondence. While these phylo-onto correlations have an hourglass shape in Deuterostomia, Ecdysozoa, plants and even fungi, they have seldom been studied in Trochozoa, and even Lophotrochozoa. Here, we compared the ontogenetic transcriptomes of the Pacific oyster, Crassostrea gigas (Bivalvia, Mollusca), the Pacific abalone, Haliotis discus hannai (Gastropoda, Mollusca), and the sand worm Perinereis aibuhitensis (Polychaeta, Annelida) using several complementary phylotranscriptomic methods to examine their evolutionary trajectories. The results revealed the late trochophore stage as the phylotypic phase. However, this basic pattern is accompanied with increased use of new genes in the trochophore stages which marks specific adaptations of the larval body plans.


Subject(s)
Crassostrea/genetics , Gastropoda/genetics , Larva/genetics , Polychaeta/genetics , Transcriptome , Adaptation, Physiological/genetics , Animals , Aquatic Organisms , Biological Evolution , Body Patterning/genetics , Crassostrea/classification , Crassostrea/growth & development , Gastropoda/classification , Gastropoda/growth & development , Gene Expression Regulation, Developmental , Genes, Homeobox , Larva/growth & development , Phylogeny , Polychaeta/classification , Polychaeta/growth & development
9.
BMC Biol ; 14: 45, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27296695

ABSTRACT

BACKGROUND: A central goal of evolutionary biology is to link genomic change to phenotypic evolution. The origin of new transcription factors is a special case of genomic evolution since it brings opportunities for novel regulatory interactions and potentially the emergence of new biological properties. RESULTS: We demonstrate that a group of four homeobox gene families (Argfx, Leutx, Dprx, Tprx), plus a gene newly described here (Pargfx), arose by tandem gene duplication from the retinal-expressed Crx gene, followed by asymmetric sequence evolution. We show these genes arose as part of repeated gene gain and loss events on a dynamic chromosomal region in the stem lineage of placental mammals, on the forerunner of human chromosome 19. The human orthologues of these genes are expressed specifically in early embryo totipotent cells, peaking from 8-cell to morula, prior to cell fate restrictions; cow orthologues have similar expression. To examine biological roles, we used ectopic gene expression in cultured human cells followed by high-throughput RNA-seq and uncovered extensive transcriptional remodelling driven by three of the genes. Comparison to transcriptional profiles of early human embryos suggest roles in activating and repressing a set of developmentally-important genes that spike at 8-cell to morula, rather than a general role in genome activation. CONCLUSIONS: We conclude that a dynamic chromosome region spawned a set of evolutionarily new homeobox genes, the ETCHbox genes, specifically in eutherian mammals. After these genes diverged from the parental Crx gene, we argue they were recruited for roles in the preimplantation embryo including activation of genes at the 8-cell stage and repression after morula. We propose these new homeobox gene roles permitted fine-tuning of cell fate decisions necessary for specification and function of embryonic and extra-embryonic tissues utilised in mammalian development and pregnancy.


Subject(s)
Evolution, Molecular , Genes, Homeobox , Mammals/genetics , Totipotent Stem Cells/metabolism , Animals , Base Sequence , Cell Nucleus/genetics , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Gene Duplication , Gene Expression Regulation, Developmental , Genome , Mammals/embryology , Protein Domains , Totipotent Stem Cells/cytology , Transcription, Genetic
10.
Cell Rep ; 14(3): 493-505, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26774490

ABSTRACT

We report that the mammalian 5-methylcytosine (5mC) oxidase Tet3 exists as three major isoforms and characterized the full-length isoform containing an N-terminal CXXC domain (Tet3FL). This CXXC domain binds to unmethylated CpGs, but, unexpectedly, its highest affinity is toward 5-carboxylcytosine (5caC). We determined the crystal structure of the CXXC domain-5caC-DNA complex, revealing the structural basis of the binding specificity of this domain as a reader of CcaCG sequences. Mapping of Tet3FL in neuronal cells shows that Tet3FL is localized precisely at the transcription start sites (TSSs) of genes involved in lysosome function, mRNA processing, and key genes of the base excision repair pathway. Therefore, Tet3FL may function as a regulator of 5caC removal by base excision repair. Active removal of accumulating 5mC from the TSSs of genes coding for lysosomal proteins by Tet3FL in postmitotic neurons of the brain may be important for preventing neurodegenerative diseases.


Subject(s)
Cytosine/analogs & derivatives , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Brain/metabolism , Cell Line , Crystallography, X-Ray , Cytosine/metabolism , DNA Methylation , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dioxygenases , Female , HEK293 Cells , Histones/metabolism , Humans , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nucleic Acid Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Transcription Initiation Site , Xenopus/metabolism
11.
J Exp Bot ; 66(21): 6651-63, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272901

ABSTRACT

5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions, and mainly located in transposable elements (TEs), especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.


Subject(s)
Cytosine/analogs & derivatives , DNA, Plant/genetics , Epigenesis, Genetic , Oryza/genetics , 5-Methylcytosine/analogs & derivatives , Chromatography, Liquid , Chromosome Mapping , Cytosine/metabolism , DNA Transposable Elements , DNA, Plant/metabolism , High-Throughput Nucleotide Sequencing , Oryza/metabolism , Sequence Analysis, DNA , Tandem Mass Spectrometry
12.
Nat Genet ; 47(6): 607-14, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25938942

ABSTRACT

Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.


Subject(s)
Carrier Proteins/metabolism , Caspase 1/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Receptors, Glucocorticoid/metabolism , Adolescent , Antineoplastic Agents, Hormonal/pharmacology , Base Sequence , Child , Child, Preschool , DNA Methylation , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Infant , Infant, Newborn , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasm Recurrence, Local/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prednisolone/pharmacology , Proteolysis , Transcription, Genetic , Tumor Cells, Cultured , Up-Regulation
15.
PLoS One ; 8(12): e84620, 2013.
Article in English | MEDLINE | ID: mdl-24391970

ABSTRACT

Epigenetic regulations play important roles in plant development and adaptation to environmental stress. Recent studies from mammalian systems have demonstrated the involvement of ten-eleven translocation (Tet) family of dioxygenases in the generation of a series of oxidized derivatives of 5-methylcytosine (5-mC) in mammalian DNA. In addition, these oxidized 5-mC nucleobases have important roles in epigenetic remodeling and aberrant levels of 5-hydroxymethyl-2'-deoxycytidine (5-HmdC) were found to be associated with different types of human cancers. However, there is a lack of evidence supporting the presence of these modified bases in plant DNA. Here we reported the use of a reversed-phase HPLC coupled with tandem mass spectrometry method and stable isotope-labeled standards for assessing the levels of the oxidized 5-mC nucleosides along with two other oxidatively induced DNA modifications in genomic DNA of Arabidopsis. These included 5-HmdC, 5-formyl-2'-deoxycytidine (5-FodC), 5-carboxyl-2'-deoxycytidine (5-CadC), 5-hydroxymethyl-2'-deoxyuridine (5-HmdU), and the (5'S) diastereomer of 8,5'-cyclo-2'-deoxyguanosine (S-cdG). We found that, in Arabidopsis DNA, the levels of 5-HmdC, 5-FodC, and 5-CadC are approximately 0.8 modifications per 10(6) nucleosides, with the frequency of 5-HmdC (per 5-mdC) being comparable to that of 5-HmdU (per thymidine). The relatively low levels of the 5-mdC oxidation products suggest that they arise likely from reactive oxygen species present in cells, which is in line with the lack of homologous Tet-family dioxygenase enzymes in Arabidopsis.


Subject(s)
Arabidopsis/chemistry , DNA, Plant/chemistry , Deoxycytidine/analogs & derivatives , Epigenesis, Genetic/physiology , Nucleosides/metabolism , Arabidopsis/physiology , Chromatography, High Pressure Liquid , Deoxycytidine/chemistry , Deoxycytidine/genetics , Deoxycytidine/metabolism , Deoxycytidine Monophosphate/analogs & derivatives , Deoxycytidine Monophosphate/chemistry , Deoxycytidine Monophosphate/metabolism , Epigenesis, Genetic/genetics , Fluoresceins/chemistry , Fluoresceins/metabolism , Isotope Labeling , Molecular Structure , Oxidation-Reduction , Tandem Mass Spectrometry , Thymidine/analogs & derivatives , Thymidine/chemistry , Thymidine/metabolism
16.
Epigenetics ; 6(3): 326-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21173572

ABSTRACT

The WW-domain containing protein KIBRA has recently been identified as a new member of the Salvador/Warts/Hippo (SWH) pathway in Drosophila and is shown to act as a tumor suppressor gene in Drosophila. This pathway is conserved in humans and members of the pathway have been shown to act as tumor suppressor genes in mammalian systems. We determined the methylation status of the 5' CpG island associated with the KIBRA gene in human cancers. In a large panel of cancer cell lines representing common epithelial cancers KIBRA was unmethylated. But in pediatric acute lymphocytic leukemia (ALL) cell lines KIBRA showed frequent hypermethylation and silencing of gene expression, which could be reversed by treatment with 5-aza-2'-deoxycytidine. In ALL patient samples KIBRA was methylated in 70% B-ALL but was methylated in < 20% T-ALL leukemia (p = 0.0019). In B-ALL KIBRA methylation was associated with ETV6/RUNX1 [t(12;21) (p13;q22)] chromosomal translocation (p = 0.0082) phenotype, suggesting that KIBRA may play an important role in t(12;21) leukemogenesis. In ALL paired samples at diagnosis and remission KIBRA methylation was seen in diagnostic but not in any of the remission samples accompanied by loss of KIBRA expression in disease state compared to patients in remission. Hence KIBRA methylation occurs frequently in B-cell acute lymphocytic leukemia but not in epithelial cancers and is linked to specific genetic event in B-ALL.


Subject(s)
Epigenesis, Genetic , Genes, Tumor Suppressor , Leukemia, B-Cell/genetics , Proteins/genetics , Acute Disease , Cell Line, Tumor , DNA Methylation , Drosophila Proteins/genetics , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phosphoproteins , Protein Serine-Threonine Kinases/genetics , Signal Transduction
17.
Mol Cancer ; 8: 42, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19570220

ABSTRACT

BACKGROUND: The Ras-association family (RASSF) of tumour suppressor genes (TSGs) contains 10 members that encode proteins containing Ras-association (RA) domains. Several members of the RASSF family are frequently epigenetically inactivated in cancer, however, their role in leukaemia has remained largely uninvestigated. Also, RASSF10 is a predicted gene yet to be experimentally verified. Here we cloned, characterised and demonstrated expression of RASSF10 in normal human bone marrow. We also determined the methylation status of CpG islands associated with RASSF1-10 in a series of childhood acute lymphocytic leukaemias (ALL) and normal blood and bone marrow samples. RESULTS: COBRA and bisulphite sequencing revealed RASSF6 and RASSF10 were the only RASSF members with a high frequency of leukaemia-specific methylation. RASSF6 was methylated in 94% (48/51) B-ALL and 41% (12/29) T-ALL, whilst RASSF10 was methylated in 16% (8/51) B-ALL and 88% (23/26) T-ALL. RASSF6 and RASSF10 expression inversely correlated with methylation which was restored by treatment with 5-aza-2'deoxycytidine (5azaDC). CONCLUSION: This study shows the hypermethylation profile of RASSF genes in leukaemias is distinct from that of solid tumours and represents the first report of inactivation of RASSF6 or RASSF10 in cancer. These data show epigenetic inactivation of the candidate TSGs RASSF6 and RASSF10 is an extremely frequent event in the pathogenesis of childhood leukaemia. This study also warrants further investigation of the newly identified RASSF member RASSF10 and its potential role in leukaemia.


Subject(s)
Genes, Tumor Suppressor , Monomeric GTP-Binding Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Amino Acid Sequence , Apoptosis Regulatory Proteins , Cell Line, Tumor , CpG Islands , DNA Methylation , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Alignment
18.
Epigenetics ; 4(4): 265-9, 2009 May 16.
Article in English | MEDLINE | ID: mdl-19550140

ABSTRACT

Recently a mouse model of T/natural killer acute lymphoblastic leukemia was used to assess global promoter methylation across the mouse genome using the restriction landmark genomic scanning technique. One of the methylated mouse genes identified in this way was Slit2. There are three mammalian SLIT genes (SLIT1, SLIT2, SLIT3), that belong to a highly conserved family of axon guidance molecules. We have previously demonstrated that SLIT2 is frequently inactivated in lung, breast, colorectal and glioma tumors by hypermethylation of a CpG island in its promoter region, whilst inactivating somatic mutations are rare. Furthermore, we demonstrated that SLIT2 acts as a tumor suppressor gene in breast and colorectal cancer cells. In this report we determined the methylation status of the SLIT2 gene in leukemias (CLL and ALL). SLIT2 was methylated in all ten leukemia cell lines analyzed (eight completely and two partially methylated). SLIT2 expression was restored after treating ALL lines with 5-aza-2dC. In primary ALL and CLL samples, SLIT2 was also frequently methylated, 58% (30/52) B-ALL; 83% (10/12) T-ALL and in 80% (24/30) CLL. Whilst DNA from peripheral blood and bone marrow from healthy control samples showed no SLIT2 methylation. Methylation results in leukemia cell lines and ALL and CLL primary samples were confirmed by direct sequencing of bisulfite modified DNA. Our results demonstrate that methylation of the SLIT2 5' CpG island is conserved between mice and humans, and therefore is likely to be of functional importance.


Subject(s)
DNA Methylation , Intercellular Signaling Peptides and Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Nerve Tissue Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Bone Marrow/metabolism , Cell Line, Tumor , CpG Islands/genetics , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Nerve Tissue Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
19.
Epigenetics ; 4(3): 185-93, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19430199

ABSTRACT

We used a chromosome 3 wide NotI microarray for identification of epigenetically inactivated genes in childhood acute lymphoblastic leukemia (ALL). Three novel genes demonstrated frequent methylation in childhood ALL. PPP2R3A (protein phosphatase 2, regulatory subunit B", alpha) was frequently methylated in T (69%) and B (82%)-ALL. Whilst FBLN2 (fibulin 2) and THRB (thyroid hormone receptor, beta) showed frequent methylation in B-ALL (58%; 56% respectively), but were less frequently methylated in T-ALL (17% for both genes). Recently it was demonstrated that BNC1 (Basonuclin 1) and MSX1 (msh homeobox 1) were frequently methylated across common epithelial cancers. In our series of childhood ALL BNC1 was frequently methylated in both T (77%) and B-ALL (79%), whilst MSX1 showed T-ALL (25%) specific methylation. The methylation of the above five genes was cancer specific and expression of the genes could be restored in methylated leukemia cell lines treated with 5-aza-2'-deoxycytidine. This is the first report demonstrating frequent epigenetic inactivation of PPP2R3A, FBLN2, THRB, BNC1 and MSX1 in leukemia. The identification of frequently methylated genes showing cancer specific methylation will be useful in developing early cancer detection screens and for targeted epigenetic therapies.


Subject(s)
Chromosomes, Human, Pair 3/genetics , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Base Sequence , Cell Line, Tumor , Gene Expression Profiling , Gene Silencing , Humans , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...