Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pharmacol Toxicol ; 21(1): 61, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32795383

ABSTRACT

BACKGROUND: The existence of a cross-talk between peritumoral adipocytes and cancer cells has been increasingly investigated. Several studies have shown that these adipocytes protect tumor cells from the effect of anticancer agents. METHODS: To investigate a potential protective effect of adipocyte-conditioned medium on HER2 positive breast cancer cells exposed to tyrosine kinase inhibitors (TKI) such as lapatinib, we analyzed the sensitivity of HER2 positive breast cancer models in vitro and in vivo on SCID mice in the presence or absence of adipocytes or adipocyte-conditioned medium. RESULTS: Conditioned medium from differentiated adipocytes reduced the in vitro sensitivity of the HER2+ cell lines BT474 and SKBR3 to TKI. Particularly, conditioned medium abrogated P27 induction in tumor cells by lapatinib but this was observed only when conditioned medium was present during exposure to lapatinib. In addition, resistance was induced with adipocytes derived from murine NIH3T3 or human hMAD cells but not with fibroblasts or preadipocytes. In vivo studies demonstrated that the contact of the tumors with adipose tissue reduced sensitivity to lapatinib. Soluble factors involved in this resistance were found to be thermolabile. Pharmacological modulation of lipolysis in adipocytes during preparation of conditioned media showed that various lipolysis inhibitors abolished the protective effect of conditioned media on tumor cells, suggesting a role for adipocyte lipolysis in the induction of resistance of tumor cells to TKI. CONCLUSIONS: Overall, our results suggest that contact of tumor cells with proximal adipose tissue induces resistance to anti HER2 small molecule inhibitors through the production of soluble thermolabile factors, and that this effect can be abrogated using lipolysis inhibitors.


Subject(s)
Adipocytes , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Culture Media, Conditioned , Drug Resistance, Neoplasm , Lapatinib/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Cell Cycle/drug effects , Cell Line , Female , Humans , Mice, SCID
2.
J Lipid Res ; 41(10): 1640-50, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11013306

ABSTRACT

This study shows that phospholipid depletion has a major impact on the size and structure of spherical, reconstituted high density lipoproteins (rHDL) and their remodeling by cholesteryl ester transfer protein (CETP). Spherical rHDL, 9.2 nm in diameter with a phospholipid/cholesteryl ester/unesterified cholesterol/apolipoprotein A-I (apoA-I) (PL/CE/UC/A-I) molar ratio of 37.3/24.5/4.1/1.0, were depleted progressively of phospholipids by incubation with phospholipase A(2). After 30 min of incubation the PL/CE/UC/A-I molar ratio of the rHDL was 8.0/31.2/4.4/1.0 and their diameter had decreased to 8.0 nm. Comparable changes in rHDL size and composition were also apparent when the incubations were carried out in the presence of other lipoprotein classes and lipoprotein-deficient plasma. The changes in size and composition were not accompanied by the dissociation of apoA-I from the rHDL. Phospholipid depletion did not affect rHDL surface charge or the structure and stability of apoA-I. The remodeling of unmodified and phospholipid-depleted rHDL by CETP was also investigated. When the rHDL were incubated for 3 h with CETP and Intralipid, transfers of core lipids between the phospholipid-depleted rHDL and Intralipid were decreased relative to unmodified rHDL. This difference was no longer apparent when the incubations were extended beyond 3 h. In these incubations apoA-I dissociated from the phospholipid-depleted and unmodified rHDL at 3 and 12 h, respectively. At 24 h the respective diameters of the unmodified rHDL and phospholipid-depleted rHDL were 8.0 and 7.8 nm. In conclusion, phospholipid depletion has a major impact on rHDL size and their remodeling by CETP.


Subject(s)
Glycoproteins , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/ultrastructure , Phospholipid Transfer Proteins , Phospholipids/metabolism , Apolipoprotein A-I/metabolism , Carrier Proteins/metabolism , Cholesterol Ester Transfer Proteins , Cholesterol Esters/metabolism , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Fluorescence Polarization , Guanidine/pharmacology , Humans , Membrane Proteins/metabolism , Molecular Conformation , Particle Size , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Phospholipases A/metabolism , Phospholipids/pharmacology , Protein Structure, Secondary/drug effects , Serum Albumin, Bovine/metabolism , Time Factors , Triglycerides/metabolism
3.
Infect Immun ; 51(2): 631-41, 1986 Feb.
Article in English | MEDLINE | ID: mdl-3943903

ABSTRACT

Among aerotolerant cells, Neisseria gonorrhoeae is very unusual because despite its obligately aerobic lifestyle and frequent isolation from purulent exudates containing polymorphonuclear leukocytes vigorously evolving O2- and H2O2, it contains no superoxide dismutase (SOD). Strains (14) of N. gonorrhoeae were compared with each other and with strains of Neisseria meningitidis, Neisseria mucosa, and Neisseria subflava under identical growth conditions for their contents of the oxy-protective enzymes catalase, peroxidase, and SOD, as well as respiratory chain proteins and activity. The absence of SOD from N. gonorrhoeae strains was demonstrated under a variety of oxygen-stress conditions. The neisserial species showed very different SOD, catalase, and peroxidase profiles. These profiles correlated well with the tolerance of the species to various intra- and extracellular oxygen insults. The high tolerance of N. gonorrhoeae for extracellular O2- and H2O2 appeared to be due to very high constitutive levels of peroxidase and catalase activity combined with a cell envelope impervious to O2-. Nevertheless, N. gonorrhoeae 19424 was much more sensitive to an intracellular flux of O2- than were the other (SOD-containing) neisserial species. The responses of N. gonorrhoeae and N. meningitidis respiratory and oxy-protective enzymes to growth under high and low oxygen tensions were followed, and a novel response, the apparent repression of the respiratory chain intermediates, respiration, and SOD, peroxidase, and catalase activity, was observed. The gonococcal catalase was partially purified and characterized. The results suggest that the very active terminal oxidase, low pO2 natural habitat, O2-stable catalase, and possibly the high glutathione content of the organism explain its aerobic survival in the absence of SOD.


Subject(s)
Neisseria/metabolism , Oxygen/pharmacology , Superoxide Dismutase/analysis , Catalase/analysis , Free Radicals , Glutathione/analysis , Hydrogen Peroxide/metabolism , Naphthoquinones/pharmacology , Neisseria/enzymology , Neisseria/growth & development
4.
Anal Biochem ; 140(2): 532-7, 1984 Aug 01.
Article in English | MEDLINE | ID: mdl-6091498

ABSTRACT

The usual method of staining polyacrylamide gel electropherograms for superoxide dismutase activity utilizes a photochemical flux of O2- to reduce nitroblue tetrazolium. Superoxide dismutases intercept O2-, preventing formazan production and thus causing achromatic bands. In the presence of H2O2, catalases also yield achromatic bands during this staining procedure. This is due to local elevation of pO2 by the catalatic decomposition of H2O2. O2, in turn, inhibits the reduction of the tetrazolium by O2-. This phenomenon provides a new activity stain for catalase. A previously described activity stain for catalase has also been reexamined and significantly improved.


Subject(s)
Catalase/analysis , Oxygen , Superoxides/analysis , 3,3'-Diaminobenzidine/pharmacology , Animals , Catalase/antagonists & inhibitors , Cattle , Chemical Phenomena , Chemistry , Chlorella/enzymology , Electrophoresis, Polyacrylamide Gel , Free Radicals , Hydrogen Peroxide , Liver/enzymology , Nitroblue Tetrazolium
5.
J Bacteriol ; 158(1): 1-8, 1984 Apr.
Article in English | MEDLINE | ID: mdl-6715278

ABSTRACT

Lactobacillus plantarum has an unusually high Mn(II) requirement for growth and accumulated over 30 mM intracellular Mn(II). The acquisition of Mn(II) by L. plantarum occurred via a specific active transport system powered by the transmembrane proton gradient. The Mn(II) uptake system has a Km of 0.2 microM and a Vmax of 24 nmol mg-1 of protein min-1. Above a medium Mn(II) concentration of 200 microM, the intracellular Mn(II) level was independent of the medium Mn(II) and unresponsive to oxygen stresses but was reduced by phosphate limitation. At a pH of 5.5, citrate, isocitrate, and cis-aconitate effectively promoted MN(II) uptake, although measurable levels of 1,5-[14C]citrate were not accumulated. When cells were presented with equimolar Mn(II) and Cd(II), Cd(II) was preferentially taken up by the Mn(II) transport system. Both Mn(II) and Cd(II) uptake were greatly increased by Mn(II) starvation. Mn(II) uptake by Mn(II)-starved cells was subject to a negative feedback regulatory mechanism functioning less than 1 min after exposure of the cells to Mn(II) and independent of protein synthesis. When presented with a relatively large amount of exogenous Mn(II), Mn(II)-starved cells exhibited a measurable efflux of their internal Mn(II), but the rate was only a small fraction of the maximal Mn(II) uptake rate.


Subject(s)
Lactobacillus/metabolism , Manganese/metabolism , Biological Transport, Active/drug effects , Cadmium/metabolism , Carboxylic Acids/pharmacology , Cations/pharmacology , Culture Media , Energy Metabolism , Formaldehyde/pharmacology , Hydrogen-Ion Concentration , Kinetics , Phosphates/pharmacology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...