Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256129

ABSTRACT

Anion exchange membrane fuel cells (AEMFCs) are attractive alternatives to proton exchange membrane fuel cells due to their ability to employ nonprecious metals as catalysts, reducing the cost of AEMFC devices. This paper presents an experimental exploration of the carbon support material effects on AEMFC performance. The silver (Ag) nanoparticles supported on three types of carbon materials including acetylene carbon (AC), carbon black (CB), and multiwalled carbon nanotube (MWCNT)-Ag/AC, Ag/CB, and Ag/MWCNT, respectively-were prepared using the wet impregnation method. The silver loading in the catalysts was designed as 60 wt.% during the synthesizing process, which was examined using thermogravimetric analysis. The elemental composition of the prepared Ag/AC, Ag/CB, and Ag/MWCNT catalysts was confirmed using X-ray diffraction analysis. The nanoparticle size of Ag attached on carbon particles or carbon nanotubes, as observed by scanning electron microscopy (SEM), was around 50 nm. For the performance tests of a single AEMFC, the obtained results indicate that the maximum power density using Ag/MWCNT as the cathode catalyst (356.5 mW·cm-2) was higher than that using Ag/AC (329.3 mW·cm-2) and Ag/CB (256.6 mW·cm-2). The better cell performance obtained using a MWCNT support can be ascribed to the higher electrical conductivity and the larger electrochemical active surface area calculated from cyclic voltammetry measurements.

2.
Materials (Basel) ; 12(13)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247928

ABSTRACT

The performance of an anion exchange membrane fuel cell (AEMFC) under various operating conditions, including cell temperature and humidification of inlet gases, was systematically investigated in this study. The experimental results indicate that the power density of an AEMFC is susceptible to the cell temperature and inlet gas humidification. A high performance AEMFC can be achieved by elevating the cell operating temperature along with the optimization of the gas feed dew points at the anode and cathode. As excess inlet gas humidification at the anode is supplied, the flooding is less severe at a higher cell temperature because the water transport in the gas diffusion substrate by evaporation is more effective upon operation at a higher cell temperature. The cell performance is slightly affected when the humidification at the anode is inadequate, owing to dehydration of the membrane, especially at a higher cell temperature. Furthermore, the cell performance in conditions of under-humidification or over-humidification at the cathode is greatly reduced at the different cell temperatures tested due to the dehydration of the anion exchange membrane and the water shortage or oxygen mass transport limitations, respectively, for the oxygen reduction reaction. In addition, back diffusion could partly support the water demand at the cathode once a water concentration gradient between the anode and cathode is formed. These results, in which sophisticated water management was achieved, can provide useful information regarding the development of high-performance AEMFC systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...