Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19559, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950031

ABSTRACT

Early detection of liver malignancy based on medical image analysis plays a crucial role in patient prognosis and personalized treatment. This task, however, is challenging due to several factors, including medical data scarcity and limited training samples. This paper presents a study of three important aspects of radiomics feature from multiphase computed tomography (CT) for classifying hepatocellular carcinoma (HCC) and other focal liver lesions: wavelet-transformed feature extraction, relevant feature selection, and radiomics features-based classification under the inadequate training samples. Our analysis shows that combining radiomics features extracted from the wavelet and original CT domains enhance the classification performance significantly, compared with using those extracted from the wavelet or original domain only. To facilitate the multi-domain and multiphase radiomics feature combination, we introduce a logistic sparsity-based model for feature selection with Bayesian optimization and find that the proposed model yields more discriminative and relevant features than several existing methods, including filter-based, wrapper-based, or other model-based techniques. In addition, we present analysis and performance comparison with several recent deep convolutional neural network (CNN)-based feature models proposed for hepatic lesion diagnosis. The results show that under the inadequate data scenario, the proposed wavelet radiomics feature model produces comparable, if not higher, performance metrics than the CNN-based feature models in terms of area under the curve.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Bayes Theorem , Tomography, X-Ray Computed , Prognosis , Retrospective Studies
2.
Sensors (Basel) ; 21(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810289

ABSTRACT

Echo planar imaging (EPI), a fast magnetic resonance imaging technique, is a powerful tool in functional neuroimaging studies. However, susceptibility artifacts, which cause misinterpretations of brain functions, are unavoidable distortions in EPI. This paper proposes an end-to-end deep learning framework, named TS-Net, for susceptibility artifact correction (SAC) in a pair of 3D EPI images with reversed phase-encoding directions. The proposed TS-Net comprises a deep convolutional network to predict a displacement field in three dimensions to overcome the limitation of existing methods, which only estimate the displacement field along the dominant-distortion direction. In the training phase, anatomical T1-weighted images are leveraged to regularize the correction, but they are not required during the inference phase to make TS-Net more flexible for general use. The experimental results show that TS-Net achieves favorable accuracy and speed trade-off when compared with the state-of-the-art SAC methods, i.e., TOPUP, TISAC, and S-Net. The fast inference speed (less than a second) of TS-Net makes real-time SAC during EPI image acquisition feasible and accelerates the medical image-processing pipelines.


Subject(s)
Artifacts , Deep Learning , Algorithms , Brain/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging
3.
Magn Reson Imaging ; 71: 1-10, 2020 09.
Article in English | MEDLINE | ID: mdl-32407764

ABSTRACT

Echo planar imaging (EPI) is a fast and non-invasive magnetic resonance imaging technique that supports data acquisition at high spatial and temporal resolutions. However, susceptibility artifacts, which cause the misalignment to the underlying structural image, are unavoidable distortions in EPI. Traditional susceptibility artifact correction (SAC) methods estimate the displacement field by optimizing an objective function that involves one or more pairs of reversed phase-encoding (PE) images. The estimated displacement field is then used to unwarp the distorted images and produce the corrected images. Since this conventional approach is time-consuming, we propose an end-to-end deep learning technique, named S-Net, to correct the susceptibility artifacts the reversed-PE image pair. The proposed S-Net consists of two components: (i) a convolutional neural network to map a reversed-PE image pair to the displacement field; and (ii) a spatial transform unit to unwarp the input images and produce the corrected images. The S-Net is trained using a set of reversed-PE image pairs and an unsupervised loss function, without ground-truth data. For a new image pair of reversed-PE images, the displacement field and corrected images are obtained simultaneously by evaluating the trained S-Net directly. Evaluations on three different datasets demonstrate that S-Net can correct the susceptibility artifacts in the reversed-PE images. Compared with two state-of-the-art SAC methods (TOPUP and TISAC), the proposed S-Net runs significantly faster: 20 times faster than TISAC and 369 times faster than TOPUP, while achieving a similar correction accuracy. Consequently, S-Net accelerates the medical image processing pipelines and makes the real-time correction for MRI scanners feasible. Our proposed technique also opens up a new direction in learning-based SAC.


Subject(s)
Deep Learning , Echo-Planar Imaging , Image Processing, Computer-Assisted/methods , Unsupervised Machine Learning , Artifacts , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...