Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(8): 4978-4981, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29611700

ABSTRACT

Several alternatives are currently investigated to prevent and control the natural process of colonization of any seawater submerged surfaces by marine organisms. Since few years we develop an approach based on addressable electroactive coatings containing conducting polymers or polymers with lateral redox groups. In this article we describe the use of a screen-printed plate formed by 96 three-electrode electrochemical cells to assess the potential of these electroactive coatings to prevent the adhesion of marine bacteria. This novel platform is intended to control and record the redox properties of the electroactive coating in each well during the bioassay (15 h) and to allow screening its antiadhesion activity with enough replicates to support significant conclusions. Validation of this platform was carried out with poly(ethylenedioxythiophene) (PEDOT) as electroactive coating obtained by electropolymerization of EDOT monomer in artificial seawater electrolyte on the working electrode of each electrochemical cell of the 96-well microplate.

2.
Biofouling ; 34(9): 1055-1063, 2018 10.
Article in English | MEDLINE | ID: mdl-30626214

ABSTRACT

Much current research is focused on preventing and controlling the natural process of colonization by marine organisms of surfaces submerged in seawater. Previously, the authors' laboratory has reported the synthesis and the full physico-chemical characterization of homopolymers obtained from 1-ferrocenylmethyl methacrylate (FMMA), 2-(ferrocenylmethoxy)ethyl methacrylate (FMOEMA), and 3-(ferrocenylmethoxy)propyl methacrylate (FMOPMA). Here, the bacterial anti-adhesion activity of these homopolymers (pFMMA, pFMOEMA and pFMOPMA) is reported when stimulated in 96-well microplates containing a printed electrochemical cell in each well. Polymers were deposited on the printed carbon working electrode of each well in two columns each comprising eight wells. Their electrochemical anti-adhesion properties were evaluated by inoculating a marine biofilm forming bacterial strain, Pseudoalteramonas lipolytica, in each well and then applying recurrent scans for 15 h. The results revealed an intrinsic anti-adhesion activity of all the polymers. This activity was amplified by a factor of 10 when potential recurrent scans were applied.


Subject(s)
Bacterial Adhesion/physiology , Biofouling/prevention & control , Electrochemical Techniques/methods , Ferrous Compounds/chemistry , Gammaproteobacteria/growth & development , Polymethacrylic Acids/chemistry , Biofilms/growth & development , Carbon , Electrodes , Metallocenes , Seawater/microbiology
3.
ACS Appl Mater Interfaces ; 7(28): 15578-86, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26121104

ABSTRACT

Di- and triblock copolymers based on tert-butyldimethylsilyl methacrylate (MASi) and poly(dimethylsiloxane) (PDMS) macro-RAFT agents were synthesized resulting in copolymers with predictable molar masses and low dispersities (D < 1.2). The block copolymers exhibited two glass transition temperatures, corresponding to the PDMS- and poly(tert-butyldimethylsilyl methacrylate) (PMASi)-enriched phases, respectively. Contact angle measurements revealed the influence of the copolymer composition on their surface free energy, with block copolymers exhibiting surface free energies as low as 15.0 mJ m(-2). A laboratory assay using 96-well plates was used to assess the activity of the block copolymers against two marine bacteria (Pseudoalteromonas sp. and Shewanella sp.) isolated from the Mediterranean Sea. Coatings based on PDMS-based block copolymers demonstrated anti-adhesive performances against the two strains better than that of the coating containing only PMASi-based polymers. Coatings based on diblock copolymers demonstrated antifouling performances in the field that were better than those of the corresponding coatings containing triblock copolymers. Results of both lab and field assays showed that the antifouling properties were related to coatings possessing the highest receding water contact angle.


Subject(s)
Bacterial Adhesion/drug effects , Dimethylpolysiloxanes/pharmacology , Pseudoalteromonas/drug effects , Shewanella/drug effects , Dimethylpolysiloxanes/chemistry , Pseudoalteromonas/physiology , Seawater/microbiology , Shewanella/physiology , Ships
SELECTION OF CITATIONS
SEARCH DETAIL
...