Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Cell Mater ; 38: 1-13, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31332770

ABSTRACT

In the current study, a method is proposed to supply culture medium into a two-layered cell-laden tubular scaffold in order to enhance cell proliferation, confluence, and viability. The two-layered cell-laden tubular scaffold was made of calcium-alginate mixed with fibroblast cells (NIH/3T3) using a lab-made double- coaxial laminar-flow generator. Afterwards, the tubular scaffold was connected to a syringe pump system using a polydimethylsiloxane (PDMS) micro-connector for long-term cell culture. Three medium pumping conditions were applied and compared: a heart-beat-mimicking pumping (20 µL/s, 1 s period, and 50 % pulse width), a continuous pumping (20 µL/s) and a non-pumping. Non-leaky connections between the tubular scaffolds and the micro-connector outlet were sustained for 13.5 ± 0.83 d in heartbeat-mimicking pumping and 11.8 ± 0.33 d in continuous pumping condition, due to the elasticity of the tubular scaffolds. Importantly, the two pumping conditions resulted in more cell proliferation, confluence, and viability than the non-pumping condition. Furthermore, analysis of newly-produced type-I collagen matrix indicated that the cells under the two pumping conditions formed a tissue-like structure. The proposed technique could further be applied to vascular co-culturing for vascular engineered tissue.


Subject(s)
Cell Culture Techniques/methods , Infusion Pumps , Tissue Engineering/methods , Tissue Scaffolds/chemistry , 3T3 Cells , Alginates/chemistry , Animals , Cell Culture Techniques/instrumentation , Collagen/metabolism , Culture Media/chemistry , Dimethylpolysiloxanes/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/physiology , Mice , Tissue Engineering/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...