Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
AMIA Jt Summits Transl Sci Proc ; 2024: 449-458, 2024.
Article in English | MEDLINE | ID: mdl-38827100

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disease with many identifying biomarkers for diagnosis. However, whole-brain phenomena, particularly in functional MRI modalities, are not fully understood nor characterized. Here we employ the novel application of topological data analysis (TDA)-based methods of persistent homology to functional brain networks from ADNI-3 cohort to perform a subtyping experiment using unsupervised clustering techniques. We then investigate variations in QT-PAD challenge features across the identified clusters. Using a Wasserstein distance kernel with a variety of clustering algorithms, we found that the 0th-homology Wasserstein distance kernel and spectral clustering yielded clusters with significant differences in whole brain and medial temporal lobe (MTL) volume, thus demonstrating an intrinsic link between whole brain functional topology and brain morphometric structure. These findings demonstrate the importance of MTL in functional connectivity and the efficacy of using TDA-based machine learning methods in network neuroscience and neurodegenerative disease subtyping.

2.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766268

ABSTRACT

Recent advances in cytometry technology have enabled high-throughput data collection with multiple single-cell protein expression measurements. The significant biological and technical variance between samples in cytometry has long posed a formidable challenge during the gating process, especially for the initial gates which deal with unpredictable events, such as debris and technical artifacts. Even with the same experimental machine and protocol, the target population, as well as the cell population that needs to be excluded, may vary across different measurements. To address this challenge and mitigate the labor-intensive manual gating process, we propose a deep learning framework UNITO to rigorously identify the hierarchical cytometric subpopulations. The UNITO framework transformed a cell-level classification task into an image-based semantic segmentation problem. For reproducibility purposes, the framework was applied to three independent cohorts and successfully detected initial gates that were required to identify single cellular events as well as subsequent cell gates. We validated the UNITO framework by comparing its results with previous automated methods and the consensus of at least four experienced immunologists. UNITO outperformed existing automated methods and differed from human consensus by no more than each individual human. Most critically, UNITO framework functions as a fully automated pipeline after training and does not require human hints or prior knowledge. Unlike existing multi-channel classification or clustering pipelines, UNITO can reproduce a similar contour compared to manual gating for each intermediate gating to achieve better interpretability and provide post hoc visual inspection. Beyond acting as a pioneering framework that uses image segmentation to do auto-gating, UNITO gives a fast and interpretable way to assign the cell subtype membership, and the speed of UNITO will not be impacted by the number of cells from each sample. The pre-gating and gating inference takes approximately 2 minutes for each sample using our pre-defined 9 gates system, and it can also adapt to any sequential prediction with different configurations.

3.
iScience ; 26(9): 107624, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37694156

ABSTRACT

Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projections, resulting into tangent-FCs. Tangent-FCs have led to more accurate models predicting brain conditions or aging. Motivated by the fact that tangent-FCs seem to be better biomarkers than FCs, we hypothesized that tangent-FCs have also a higher fingerprint. We explored the effects of six factors: fMRI condition, scan length, parcellation granularity, reference matrix, main-diagonal regularization, and distance metric. Our results showed that identification rates are systematically higher when using tangent-FCs across the "fingerprint gradient" (here including test-retest, monozygotic and dizygotic twins). Highest identification rates were achieved when minimally (0.01) regularizing FCs while performing tangent space projection using Riemann reference matrix and using correlation distance to compare the resulting tangent-FCs. Such configuration was validated in a second dataset (resting-state).

4.
AMIA Jt Summits Transl Sci Proc ; 2023: 225-233, 2023.
Article in English | MEDLINE | ID: mdl-37350917

ABSTRACT

Exploring the neural basis of intelligence and the corresponding associations with brain network has been an active area of research in network neuroscience. Up to now, the majority of explorations mining human intelligence in brain connectomics leverages whole-brain functional connectivity patterns. In this study, structural connectivity patterns are instead used to explore relationships between brain connectivity and different behavioral/cognitive measures such as fluid intelligence. Specifically, we conduct a study using the 397 unrelated subjects from Human Connectome Project (Young Adults) dataset to estimate individual level structural connectivity matrices. We show that topological features, as quantified by our proposed measurements: Average Persistence (AP) and Persistent Entropy (PE), has statistically significant associations with different behavioral/cognitive measures. We also perform a parallel study using traditional graph-theoretical measures, provided by Brain Connectivity Toolbox, as benchmarks for our study. Our findings indicate that individual's structural connectivity indeed offers reliable predictive power of different behavioral/cognitive measures, including but not limited to fluid intelligence. Our results suggest that structural connectomes provide complementary insights (compared to using functional connectomes) in predicting human intelligence and warrants future studies on human intelligence and/or other behavioral/cognitive measures involving multi-modal approach.

5.
bioRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38187668

ABSTRACT

Human whole-brain functional connectivity networks have been shown to exhibit both local/quasilocal (e.g., set of functional sub-circuits induced by node or edge attributes) and non-local (e.g., higher-order functional coordination patterns) properties. Nonetheless, the non-local properties of topological strata induced by local/quasilocal functional sub-circuits have yet to be addressed. To that end, we proposed a homological formalism that enables the quantification of higher-order characteristics of human brain functional sub-circuits. Our results indicated that each homological order uniquely unravels diverse, complementary properties of human brain functional sub-circuits. Noticeably, the H1 homological distance between rest and motor task were observed at both whole-brain and sub-circuit consolidated level which suggested the self-similarity property of human brain functional connectivity unraveled by homological kernel. Furthermore, at the whole-brain level, the rest-task differentiation was found to be most prominent between rest and different tasks at different homological orders: i) Emotion task H0, ii) Motor task H1, and iii) Working memory task H2. At the functional sub-circuit level, the rest-task functional dichotomy of default mode network is found to be mostly prominent at the first and second homological scaffolds. Also at such scale, we found that the limbic network plays a significant role in homological reconfiguration across both task- and subject- domain which sheds light to subsequent Investigations on the complex neuro-physiological role of such network. From a wider perspective, our formalism can be applied, beyond brain connectomics, to study non-localized coordination patterns of localized structures stretching across complex network fibers.

6.
Evol Appl ; 15(7): 1141-1161, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35899250

ABSTRACT

Vietnam harnesses a rich diversity of rice landraces adapted to a range of conditions, which constitute a largely untapped source of diversity for the continuous improvement of cultivars. We previously identified a strong population structure in Vietnamese rice, which is captured in five Indica and four Japonica subpopulations, including an outlying Indica-5 group. Here, we leveraged that strong differentiation and 672 native rice genomes to identify genomic regions and genes putatively selected during the breeding of rice in Vietnam. We identified significant distorted patterns in allele frequency (XP-CLR) and population differentiation scores (F ST) resulting from differential selective pressures between native subpopulations, and later annotated them with QTLs previously identified by GWAS in the same panel. We particularly focussed on the outlying Indica-5 subpopulation because of its likely novelty and differential evolution, where we annotated 52 selected regions, which represented 8.1% of the rice genome. We annotated the 4576 genes in these regions and selected 65 candidate genes as promising breeding targets, several of which harboured alleles with nonsynonymous substitutions. Our results highlight genomic differences between traditional Vietnamese landraces, which are likely the product of adaption to multiple environmental conditions and regional culinary preferences in a very diverse country. We also verified the applicability of this genome scanning approach to identify potential regions harbouring novel loci and alleles to breed a new generation of sustainable and resilient rice.

7.
Brain Connect ; 12(2): 180-192, 2022 03.
Article in English | MEDLINE | ID: mdl-34015966

ABSTRACT

Background: Functional connectivity quantifies the statistical dependencies between the activity of brain regions, measured using neuroimaging data such as functional magnetic resonance imaging (fMRI) blood-oxygenation-level dependent time series. The network representation of functional connectivity, called a functional connectome (FC), has been shown to contain an individual fingerprint allowing participants identification across consecutive testing sessions. Recently, researchers have focused on the extraction of these fingerprints, with potential applications in personalized medicine. Materials and Methods: In this study, we show that a mathematical operation denominated degree-normalization can improve the extraction of FC fingerprints. Degree-normalization has the effect of reducing the excessive influence of strongly connected brain areas in the whole-brain network. We adopt the differential identifiability framework and apply it to both original and degree-normalized FCs of 409 individuals from the Human Connectome Project, in resting-state and 7 fMRI tasks. Results: Our results indicate that degree-normalization systematically improves three fingerprinting metrics, namely differential identifiability, identification rate, and matching rate. Moreover, the results related to the matching rate metric suggest that individual fingerprints are embedded in a low-dimensional space. Discussion: The results suggest that low-dimensional functional fingerprints lie in part in weakly connected subnetworks of the brain and that degree-normalization helps uncovering them. This work introduces a simple mathematical operation that could lead to significant improvements in future FC fingerprinting studies.


Subject(s)
Connectome , Benchmarking , Brain/diagnostic imaging , Connectome/methods , Humans , Magnetic Resonance Imaging/methods , Time Factors
8.
Article in English | MEDLINE | ID: mdl-37041884

ABSTRACT

Graph theoretical measures have frequently been used to study disrupted connectivity in Alzheimer's disease human brain connectomes. However, prior studies have noted that differences in graph creation methods are confounding factors that may alter the topological observations found in these measures. In this study, we conduct a novel investigation regarding the effect of parcellation scale on graph theoretical measures computed for fiber density networks derived from diffusion tensor imaging. We computed 4 network-wide graph theoretical measures of average clustering coefficient, transitivity, characteristic path length, and global efficiency, and we tested whether these measures are able to consistently identify group differences among healthy control (HC), mild cognitive impairment (MCI), and AD groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort across 5 scales of the Lausanne parcellation. We found that the segregative measure of transtivity offered the greatest consistency across scales in distinguishing between healthy and diseased groups, while the other measures were impacted by the selection of scale to varying degrees. Global efficiency was the second most consistent measure that we tested, where the measure could distinguish between HC and MCI in all 5 scales and between HC and AD in 3 out of 5 scales. Characteristic path length was highly sensitive to the variation in scale, corroborating previous findings, and could not identify group differences in many of the scales. Average clustering coefficient was also greatly impacted by scale, as it consistently failed to identify group differences in the higher resolution parcellations. From these results, we conclude that many graph theoretical measures are sensitive to the selection of parcellation scale, and further development in methodology is needed to offer a more robust characterization of AD's relationship with disrupted connectivity.

9.
Netw Neurosci ; 5(3): 666-688, 2021.
Article in English | MEDLINE | ID: mdl-34746622

ABSTRACT

The quantification of human brain functional (re)configurations across varying cognitive demands remains an unresolved topic. We propose that such functional configurations may be categorized into three different types: (a) network configural breadth, (b) task-to task transitional reconfiguration, and (c) within-task reconfiguration. Such functional reconfigurations are rather subtle at the whole-brain level. Hence, we propose a mesoscopic framework focused on functional networks (FNs) or communities to quantify functional (re)configurations. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, trapping efficiency (TE) and exit entropy (EE), which capture topology and integration of information within and between a reference set of FNs. We use this framework to quantify the network configural breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks, and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence, and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.

10.
Netw Neurosci ; 5(3): 646-665, 2021.
Article in English | MEDLINE | ID: mdl-34746621

ABSTRACT

Modeling communication dynamics in the brain is a key challenge in network neuroscience. We present here a framework that combines two measurements for any system where different communication processes are taking place on top of a fixed structural topology: path processing score (PPS) estimates how much the brain signal has changed or has been transformed between any two brain regions (source and target); path broadcasting strength (PBS) estimates the propagation of the signal through edges adjacent to the path being assessed. We use PPS and PBS to explore communication dynamics in large-scale brain networks. We show that brain communication dynamics can be divided into three main "communication regimes" of information transfer: absent communication (no communication happening); relay communication (information is being transferred almost intact); and transducted communication (the information is being transformed). We use PBS to categorize brain regions based on the way they broadcast information. Subcortical regions are mainly direct broadcasters to multiple receivers; Temporal and frontal nodes mainly operate as broadcast relay brain stations; visual and somatomotor cortices act as multichannel transducted broadcasters. This work paves the way toward the field of brain network information theory by providing a principled methodology to explore communication dynamics in large-scale brain networks.

11.
Rice (N Y) ; 14(1): 52, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34110541

ABSTRACT

BACKGROUND: Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. RESULTS: We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. CONCLUSIONS: We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.

12.
Neuroimage ; 221: 117181, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32702487

ABSTRACT

It has been well established that Functional Connectomes (FCs), as estimated from functional MRI (fMRI) data, have an individual fingerprint that can be used to identify an individual from a population (subject-identification). Although identification rate is high when using resting-state FCs, other tasks show moderate to low values. Furthermore, identification rate is task-dependent, and is low when distinct cognitive states, as captured by different fMRI tasks, are compared. Here we propose an embedding framework, GEFF (Graph Embedding for Functional Fingerprinting), based on group-level decomposition of FCs into eigenvectors. GEFF creates an eigenspace representation of a group of subjects using one or more task FCs (Learning Stage). In the Identification Stage, we compare new instances of FCs from the Learning subjects within this eigenspace (validation dataset). The validation dataset contains FCs either from the same tasks as the Learning dataset or from the remaining tasks that were not included in Learning. Assessment of validation FCs within the eigenspace results in significantly increased subject-identification rates for all fMRI tasks tested and potentially task-independent fingerprinting process. It is noteworthy that combining resting-state with one fMRI task for GEFF Learning Stage covers most of the cognitive space for subject identification. Thus, while designing an experiment, one could choose a task fMRI to ask a specific question and combine it with resting-state fMRI to extract maximum subject differentiability using GEFF. In addition to subject-identification, GEFF was also used for identification of cognitive states, i.e. to identify the task associated to a given FC, regardless of the subject being already in the Learning dataset or not (subject-independent task-identification). In addition, we also show that eigenvectors from the Learning Stage can be characterized as task- and subject-dominant, subject-dominant or neither, using two-way ANOVA of their corresponding loadings, providing a deeper insight into the extent of variance in functional connectivity across individuals and cognitive states.


Subject(s)
Brain/physiology , Cognition/physiology , Connectome/methods , Magnetic Resonance Imaging/methods , Models, Theoretical , Adult , Brain/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...