Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 183: 114212, 2024 May.
Article in English | MEDLINE | ID: mdl-38760140

ABSTRACT

This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.


Subject(s)
Emulsions , Hot Temperature , Lens Plant , Particle Size , Plant Proteins , Lens Plant/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions , Food Handling/methods , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared , Circular Dichroism , Rheology , Ultrasonics/methods , Sonication/methods
2.
Gels ; 8(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36354602

ABSTRACT

Bigel (BG) has been shown to be promising for the food industry due to the possibility to manipulate the properties of the system by adjusting the ratio of each individual phase, namely the hydrogel (H) and oleogel (O) phases. This work aimed to evaluate the influence of the O:H ratio on the physical-rheological properties of BG produced with potato starch (PS) and glycerol monostearate (GM). The hydrogel hardness (i.e., 1423.47 g) directly influenced the viscosity of the BG samples, as BG with a higher H-phase presented the highest viscosity and firmness. All BG samples presented shear-thinning behavior and structural breakdown at ~50 °C. BG with a higher O-phase had superior results for thermal stability, softer texture, and yield stress values, representative of good plasticity and spreadability, as compared to BG with less O-phase. The BG with 80% H-phase was less stable during the 21 days of storage in relation to the other BG samples. This study showed the role that the O:H ratio plays in the development of PS-GM-based BGs with tailor-made physical-rheological properties. In addition, the BG is an easily reproduced system with great potential to be used as a trans and saturated fat substitute in food applications.

3.
Foods ; 11(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010482

ABSTRACT

This study evaluates the use of chickpea aquafaba (CA)-based emulsions as a potential substitute for palm oil (PO), using pound cake as a case study. The CA was characterized in terms of pH (6.38 ± 0.01), density (1.02 g mL-1 ± 0.01), color, total soluble solids (6.3 ± 0.2 °Bx), total solids (5.7 ± 0.2%), thermal properties through DSC, and apparent viscosity (2.5 cPa·s-1 ± 0.02 at 300 s-1). Emulsions containing 35, 30, and 25% of CA were produced and applied to cake formulation C1, C2, and C3, respectively. The cake batter was evaluated in terms of apparent density (0.87-1.04 g1 cm-3), rheology, and pH (6.6-6.8). The cakes were evaluated for specific volume, baking loss (8.9-9.5%), color, and symmetry index on day 1, and firmness, water activity (aw), and moisture content (%), after 14 days of storage. The cakes produced with the emulsions were found to have slightly higher specific volume (2.3 cm3 g-1) when compared to the control (C4) produced with PO (2.2 cm3 g-1). The moisture and aw decreased and firmness increased during storage. In terms of formulation (i.e., day 1 for C1, C2, C3, and C4), there was no significant difference for moisture. As for aw, the C4 (0.90) was significantly different from the cakes produced with emulsions (0.91-0.92). The results from the sensory evaluation, carried out with 120 panelists, showed no statistically significant difference between C3 and C4 for the attributes of aroma, color, texture, flavor, and overall impression. Based on our results, it appears that the CA-based emulsions have the potential to replace PO in pound-cake recipes, reducing total and saturated fat.

4.
Foods ; 11(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35681338

ABSTRACT

Aquafaba is a liquid residue of cooked pulses, which is generally discarded as waste. However, it is rich in proteins and, thus, can be used as a plant-based emulsifier to structure vegetable oil. This study investigates chickpea aquafaba (CA) as an agent to structure different oil phase volumes (Φ) of canola oil (CO). CO was structured in the form of conventional emulsions (EΦ65% and EΦ70%) and high internal phase emulsion (HIPE) (EΦ75%) by the one-pot homogenization method. Emulsions were evaluated for a period of 60 days at 25 °C in terms of average droplet size (11.0−15.9 µm), microscopy, rheological properties, and oil loss (<1.5%). All systems presented predominantly elastic behavior and high resistance to coalescence. EΦ75% was the most stable system throughout the 60 days of storage. This study developed an inexpensive and easy to prepare potential substitute for saturated and trans-fat in food products. Moreover, it showed a valuable utilization of an often-wasted by-product and its conversion into a food ingredient.

5.
Food Chem X ; 13: 100179, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34917929

ABSTRACT

Gum arabic, modified corn starch (EMCAP), modified malt (MALT), either blended or isolated, were assessed as encapsulating agents for Capsicum oleoresin. Capsicum oleoresin microparticles were obtained by spray drying and analysed for physicochemical properties and in vivo. Obtained powders were adequate for storage, given their low water activity (<0.150), hygroscopicity (<11.43 g/100 g), moisture (<4.76%) and high glass transition temperature (<98.3 °C). FT-IR analysis concluded that carbohydrates matrices were loaded after spray drying, with peaks around 2850 cm -1 for aromatic compounds, and bands around 1760 cm-1, pointing to the presence of capsaicin inside the microparticles. All formulations exhibited high antioxidant activity, low contact angles and great solubility in water. Any adverse effect was observed in the experimental assay, neither change on the level of hepatic aminotransferases. The intake of a High-Fat Diet (HFD) supplemented with Capsicum oleoresin microparticles decreased weight gain when compared to the HFD control.

6.
Food Chem ; 326: 126995, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32413748

ABSTRACT

This study aimed at encapsulating pomegranate seed oil (PSO) by emulsification followed by spray drying using whey protein isolate (WPI) in its natural form, heated (Pickering), and combined with modified starch (WPI:Capsul®) as emulsifiers/wall materials. Emulsions were stable under different stress conditions. Pickering emulsions presented bigger droplet size (6.49-9.98 µm) when compared to WPI (1.88-4.62 µm) and WPI:Capsul® emulsions (1.68-5.62 µm). Sixteen fatty acids were identified in PSO. WPI treatment was considered the best formulation since it presented the highest fatty acid retention (68.51, 65.47, 47.27, 53.68, 52.95, and 52.28% for linoleic, oleic, punicic, α-eleostearic, catalpic, and ß-eleostearic acids after 30 days-storage, respectively) and protected the oil against volatile compound formation (heptanal, (E,E)-2,4-heptadienal, (Z)-2-heptenal, octanal, pentanal, (E)-2-hexenal, (E)-2-octenal, nonanal, (E)-2-decenal, and (E,E)-2,4-octadienal), which did not occur with free PSO. Overall, encapsulation protected PSO against oxidation over time, which may allow the development of new functional foods.


Subject(s)
Plant Oils/chemistry , Pomegranate/chemistry , Starch/chemistry , Whey Proteins/chemistry , Desiccation , Emulsifying Agents/chemistry , Emulsions , Hot Temperature , Oxidation-Reduction , Whey Proteins/isolation & purification
7.
Membranes (Basel) ; 11(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383662

ABSTRACT

Spent brewer's yeast (Saccharomyces sp.), the second most generated by-product from the brewing industry, contains bioactive and nutritional compounds with high added value such as proteins (40-50%), polysaccharides, fibers and vitamins. Molecules of interest from agro-industrial by-products need to be extracted, separated, concentrated, and/or purified so that a minimum purity level is achieved, allowing its application. Enzymatic hydrolysis has been successfully used in the production of peptides and protein hydrolysates. The obtained hydrolysates require efficient downstream processes such as membrane technology, which is an important tool for the recovery of thermolabile and sensitive compounds from complex mixtures, with low energy consumption and high specificity. The integration of membrane techniques that promote the separation through sieving and charge-based mechanisms is of great interest to improve the purity of the recovered fractions. This review is specifically addressed to the application of membrane technologies for the recovery of peptides from yeast protein hydrolysates. Fundamental concepts and practical aspects relative to the ultrafiltration of agro-industrial protein hydrolysates will be described. Challenges and perspectives involving the recovery of peptides from yeast protein hydrolysates will be presented and thoroughly discussed.

8.
Food Res Int ; 127: 108720, 2020 01.
Article in English | MEDLINE | ID: mdl-31882083

ABSTRACT

Growing awareness in favor of innovative and healthier alternatives is creating a noticeable shift from synthetic colorants to natural additives. And, such a swing in the consumer market is growing slowly but noticeably. In this context, genipap (Genipa americana L.) fruit represents an emerging source of blue colorants in Latin America with extensive application possibilities. This is despite the fact that there are few studies concerning its toxicity predictive factors. In this early-stage study we propose to investigate safety issues around genipap extract (IBBP); we also attempt to identify fingerprint profiling of both IBBP extract and solid lipid microparticles containing IBBP extract (SLM-IBBP) using in vitro assays. The main compounds identified were genipin, and genipin 1-ß-gentiobioside. Results indicated that IBBP extract, at 25 µg/mL, was able to promote DNA damage in CHO-K1 cells, suggesting a genotoxic effect. On the other hand, the SLM-IBBP inhibited almost all cancer cell lines with GI50 ranging from 0.25 µg/mL to 43.5 µg/mL. Also, IBBP-SLM seems to exert a desirable apoptosis induction (at 25 µg/mL dosage). The next steps for our work, therefore, will focus on other nanoparticle formulation approaches, in particular with the use of natural Brazilian starch. An evaluation of the metabolism and distribution of microparticles, and their safety for food and pharmaceutical purposes, are also required.


Subject(s)
Fruit/chemistry , Plant Extracts/pharmacology , Rubiaceae/chemistry , Animals , Apoptosis/drug effects , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Lipids , Mass Spectrometry , Microscopy, Electron
SELECTION OF CITATIONS
SEARCH DETAIL
...