Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38908009

ABSTRACT

BACKGROUND AND AIMS: Progress in the systematic studies of the olive family (Oleaceae) during the last two decades provides the opportunity to update its backbone phylogeny and to investigate its historical biogeography. We additionally aimed to understand the factors underlying the disjunct distribution pattern between East Asia and both West Asia and Europe that is found more commonly in this family than in any other woody plant families. METHODS: Using a sampling of 298 species out of ca. 750, the largest in a phylogenetic study of Oleaceae thus far, and a set of 36 plastid and nuclear markers, we reconstructed and dated a new phylogenetic tree based on maximum likelihood and Bayesian methods and checked for any reticulation events. We also assessed the relative support of four competing hypotheses [Qinghai-Tibet Plateau uplift (QTP-only hypothesis), climatic fluctuations (Climate-only hypothesis), combined effects of QTP uplift and climate (QTP-Climate hypothesis), and no effects (Null hypothesis)] in explaining these disjunct distributions. KEY RESULTS: We recovered all tribes and subtribes within Oleaceae as monophyletic, but uncertainty in the position of tribe Forsythieae remains. Based on this dataset, no reticulation event was detected. Our biogeographic analyses support the QTP-Climate hypothesis as the likely main explanation for the East-West Eurasian disjunctions in Oleaceae. Our results also show an earlier origin of Oleaceae at ca. 86 Mya and the role of Tropical Asia as a main source of species dispersals. CONCLUSION: Our new family-wide and extensive phylogenetic tree highlights both the stable relationships within Oleaceae, including the polyphyly of the genus Chionanthus, and the need for further systematic studies within the family's largest and most under-sampled genera (Chionanthus and Jasminum). Increased sampling will also help to fine-tune biogeographic analyses across spatial scales and geological times.

2.
Curr Biol ; 34(9): 1977-1986.e8, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38626764

ABSTRACT

Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.


Subject(s)
Phylogeny , Self-Incompatibility in Flowering Plants , Self-Incompatibility in Flowering Plants/genetics , Flowers/genetics , Olea/genetics , Olea/physiology , Oleaceae/genetics , Genes, Plant
3.
Genes (Basel) ; 11(12)2020 12 16.
Article in English | MEDLINE | ID: mdl-33339232

ABSTRACT

The olive family, Oleaceae, is a group of woody plants comprising 28 genera and ca. 700 species, distributed on all continents (except Antarctica) in both temperate and tropical environments. It includes several genera of major economic and ecological importance such as olives, ash trees, jasmines, forsythias, osmanthuses, privets and lilacs. The natural history of the group is not completely understood yet, but its diversification seems to be associated with polyploidisation events and the evolution of various reproductive and dispersal strategies. In addition, some taxonomical issues still need to be resolved, particularly in the paleopolyploid tribe Oleeae. Reconstructing a robust phylogenetic hypothesis is thus an important step toward a better comprehension of Oleaceae's diversity. Here, we reconstructed phylogenies of the olive family using 80 plastid coding sequences, 37 mitochondrial genes, the complete nuclear ribosomal cluster and a small multigene family encoding phytochromes (phyB and phyE) of 61 representative species. Tribes and subtribes were strongly supported by all phylogenetic reconstructions, while a few Oleeae genera are still polyphyletic (Chionanthus, Olea, Osmanthus, Nestegis) or paraphyletic (Schrebera, Syringa). Some phylogenetic relationships among tribes remain poorly resolved with conflicts between topologies reconstructed from different genomic regions. The use of nuclear data remains an important challenge especially in a group with ploidy changes (both paleo- and neo-polyploids). This work provides new genomic datasets that will assist the study of the biogeography and taxonomy of the whole Oleaceae.


Subject(s)
Genome, Plant , Oleaceae/genetics , Plastids/genetics , Cell Nucleus/genetics , DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , DNA, Plant/genetics , DNA, Ribosomal/genetics , Datasets as Topic , Evolution, Molecular , Genes, Plant , Genetic Variation , Likelihood Functions , Multigene Family , Oleaceae/classification , Phylogeny , Phytochrome/genetics , Plant Proteins/genetics , Polyploidy , Species Specificity
4.
Ecol Evol ; 10(4): 1876-1888, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128122

ABSTRACT

Self-incompatibility (SI) is the main mechanism that favors outcrossing in plants. By limiting compatible matings, SI interferes in fruit production and breeding of new cultivars. In the Oleeae tribe (Oleaceae), an unusual diallelic SI system (DSI) has been proposed for three distantly related species including the olive (Olea europaea), but empirical evidence has remained controversial for this latter. The olive domestication is a complex process with multiple origins. As a consequence, the mixing of S-alleles from two distinct taxa, the possible artificial selection of self-compatible mutants and the large phenological variation of blooming may constitute obstacles for deciphering SI in olive. Here, we investigate cross-genotype compatibilities in the Saharan wild olive (O. e. subsp. laperrinei). As this taxon was geographically isolated for thousands of years, SI should not be affected by human selection. A population of 37 mature individuals maintained in a collection was investigated. Several embryos per mother were genotyped with microsatellites in order to identify compatible fathers that contributed to fertilization. While the pollination was limited by distance inside the collection, our results strongly support the DSI hypothesis, and all individuals were assigned to two incompatibility groups (G1 and G2). No self-fertilization was observed in our conditions. In contrast, crosses between full or half siblings were frequent (ca. 45%), which is likely due to a nonrandom assortment of related trees in the collection. Finally, implications of our results for orchard management and the conservation of olive genetic resources are discussed.

5.
Am J Bot ; 106(5): 667-678, 2019 05.
Article in English | MEDLINE | ID: mdl-31059141

ABSTRACT

PREMISE: The distributions of plant clades are shaped by abiotic and biotic factors as well as historical aspects such as center of origin. Dispersals between distant areas may lead to niche evolution when lineages are established in new environments. Alternatively, dispersing lineages may exhibit niche conservatism, moving between areas with similar environmental conditions. Here we test these contrasting hypotheses in the Datureae clade (Solanaceae). METHODS: We used maximum likelihood methods to estimate the ancestral range of Datureae along with the history of biogeographic events. We then characterized the niche of each taxon using climatic and soil variables and tested for shifts in environmental niche optima. Finally, we examined how these shifts relate to the niche breadth of taxa and clades within Datureae and the degree of overlap between them. RESULTS: Datureae originated in the Andes and subsequently expanded its range to North America and non-Andean regions of South America. The ancestral niche, and that of most Datura and Trompettia species, is dry, while Brugmansia species likely shifted toward a more mesic environment. Nonetheless, most Datureae present moderate to high overlap in niche breadth today. CONCLUSIONS: The expansion of Datureae into North America was associated with niche conservatism, with dispersal into similarly dry areas as occupied by the ancestral lineage. Subsequent niche evolution, including the apparent shift to a mesic niche in Brugmansia, diversified the range of habitats occupied by species in the tribe Datureae but also led to significant niche overlap among the three genera.


Subject(s)
Biological Evolution , Ecosystem , Plant Dispersal , Solanaceae/physiology , North America , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...