Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34877147

ABSTRACT

Most models currently used for complex phases in the calculation of phase diagrams (Calphad) method are based on the compound energy formalism. The way this formalism is presently used, however, is prone to poor extrapolation behavior in higher-order systems, especially when treating phases with complex crystal structures. In this paper, a partition of the Gibbs energy into effective bond energies, without changing its configurational entropy expression, is proposed, thereby remarkably improving the extrapolation behavior. The proposed model allows the use of as many sublattices as there are occupied Wyckoff sites and has great potential for reducing the number of necessary parameters, thus allowing shorter computational time. Examples for face centered cubic (fcc) ordering and the σ phase are given.

2.
Neurotox Res ; 10(3-4): 193-8, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17197369

ABSTRACT

We recently investigated the effects of stress on synaptic plasticity in the prefrontal cortex, namely the prelimbic area or the apparent homologue of the primate subgenual prefrontal cortex in humans where most of the hippocampal terminal fields are localized. Exposure to an acute stress causes a remarkable and long-lasting inhibition of long term potentiation (LTP) in the frontal cortex evoked by stimulation of hippocampal outflow and this impairment is prevented by the glucocorticoid receptor antagonist mifepristone. Thus, the frontal cortex is also a target for glucocorticoids involved in the stress response. Current data show that antidepressants of various types, i.e., tianeptine and fluoxetine, at doses normally used in antidepressant testing, restore LTP impaired by prior acute stress. Interestingly, clozapine administered in a similar way after stress rapidly reverses the stress-induced impairment of LTP at doses which do not affect LTP alone. This stress paradigm highlights comorbidity for both etiology and treatment of psychiatric disorders like depression and schizophrenia. Restoring appropriate cognitive functions in circuits associated with dysfunctions in coping with stress may be proposed as a new systems-level approach to drug discovery and development. We are presently investigating the involvement of signalling molecules in producing these plastic changes.


Subject(s)
Neuronal Plasticity/drug effects , Prefrontal Cortex/physiopathology , Psychotropic Drugs/therapeutic use , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology , Antidepressive Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Brain-Derived Neurotrophic Factor/physiology , Depressive Disorder/drug therapy , Depressive Disorder/physiopathology , Humans , Prefrontal Cortex/drug effects , Schizophrenia/drug therapy , Schizophrenia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...