Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1933, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431601

ABSTRACT

Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.


Subject(s)
Genome-Wide Association Study , Host Adaptation , Virulence/genetics , Polymorphism, Genetic , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
2.
mBio ; 12(1)2021 02 02.
Article in English | MEDLINE | ID: mdl-33531402

ABSTRACT

Fatty acid biosynthesis (FASII) enzymes are considered valid targets for antimicrobial drug development against the human pathogen Staphylococcus aureus However, incorporation of host fatty acids confers FASII antibiotic adaptation that compromises prospective treatments. S. aureus adapts to FASII inhibitors by first entering a nonreplicative latency period, followed by outgrowth. Here, we used transcriptional fusions and direct metabolite measurements to investigate the factors that dictate the duration of latency prior to outgrowth. We show that stringent response induction leads to repression of FASII and phospholipid synthesis genes. (p)ppGpp induction inhibits synthesis of malonyl-CoA, a molecule that derepresses FapR, a key regulator of FASII and phospholipid synthesis. Anti-FASII treatment also triggers transient expression of (p)ppGpp-regulated genes during the anti-FASII latency phase, with concomitant repression of FapR regulon expression. These effects are reversed upon outgrowth. GTP depletion, a known consequence of the stringent response, also occurs during FASII latency, and is proposed as the common signal linking these responses. We next showed that anti-FASII treatment shifts malonyl-CoA distribution between its interactants FapR and FabD, toward FapR, increasing expression of the phospholipid synthesis genes plsX and plsC during outgrowth. We conclude that components of the stringent response dictate malonyl-CoA availability in S. aureus FASII regulation, and contribute to latency prior to anti-FASII-adapted outgrowth. A combinatory approach, coupling a (p)ppGpp inducer and an anti-FASII, blocks S. aureus outgrowth, opening perspectives for bi-therapy treatment.IMPORTANCEStaphylococcus aureus is a major human bacterial pathogen for which new inhibitors are urgently needed. Antibiotic development has centered on the fatty acid synthesis (FASII) pathway, which provides the building blocks for bacterial membrane phospholipids. However, S. aureus overcomes FASII inhibition and adapts to anti-FASII by using exogenous fatty acids that are abundant in host environments. This adaptation mechanism comprises a transient latency period followed by bacterial outgrowth. Here, we use metabolite sensors and promoter reporters to show that responses to stringent conditions and to FASII inhibition intersect, in that both involve GTP and malonyl-CoA. These two signaling molecules contribute to modulating the duration of latency prior to S. aureus adaptation outgrowth. We exploit these novel findings to propose a bi-therapy treatment against staphylococcal infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fatty Acids/antagonists & inhibitors , Guanosine Pentaphosphate/physiology , Guanosine Triphosphate/physiology , Malonyl Coenzyme A/physiology , Staphylococcus aureus/drug effects , Adaptation, Physiological/drug effects , Fatty Acids/biosynthesis , Humans , Malonyl Coenzyme A/analysis , Mupirocin/pharmacology , Phospholipids/biosynthesis , Staphylococcal Infections/drug therapy , Staphylococcus aureus/physiology
3.
Cell Rep ; 29(12): 3974-3982.e4, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851927

ABSTRACT

The essentiality of fatty acid synthesis (FASII) products in the human pathogen Staphylococcus aureus is the underlying rationale for FASII-targeted antimicrobial drug design. Reports of anti-FASII efficacy in animals support this choice. However, restricted test conditions used previously led us to investigate this postulate in a broader, host-relevant context. We report that S. aureus rapidly adapts to FASII antibiotics without FASII mutations when exposed to host environments. FASII antibiotic administration upon signs of infection, rather than just after inoculation as commonly practiced, fails to eliminate S. aureus in a septicemia model. In vitro, serum lowers S. aureus membrane stress, leading to a greater retention of the substrates required for environmental fatty acid (eFA) utilization: eFAs and the acyl carrier protein. In this condition, eFA occupies both phospholipid positions, regardless of anti-FASII selection. Our results identify S. aureus membrane plasticity in host environments as a main limitation for using FASII antibiotics in monotherapeutic treatments.


Subject(s)
Adaptation, Physiological , Anti-Bacterial Agents/pharmacology , Fatty Acids/metabolism , Host-Pathogen Interactions , Sepsis/pathology , Staphylococcal Infections/pathology , Staphylococcus aureus/drug effects , Animals , Drug Resistance, Bacterial , Female , Mice , Mice, Inbred BALB C , Sepsis/drug therapy , Sepsis/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...