Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 132(2): 1526-1542, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34424588

ABSTRACT

AIMS: Aerobic methane oxidation coupled to denitrification (AME-D) is a promising process for removing nitrate from groundwater and yet its microbial mechanism and ecological implications are not fully understood. This study used RNA stable isotope probing (RNA-SIP) and high-throughput sequencing to identify the micro-organisms that are actively involved in aerobic methane oxidation within a denitrifying biofilm. METHODS AND RESULTS: Two RNA-SIP experiments were conducted to investigate labelling of RNA and methane monooxygenase (pmoA) transcripts when exposed to 13 C-labelled methane over a 96-hour time period and to determine active bacteria involved in methane oxidation in a denitrifying biofilm. A third experiment was performed to ascertain the extent of 13 C labelling of RNA using isotope ratio mass spectrometry (IRMS). All experiments used biofilm from an established packed bed reactor. IRMS confirmed 13 C enrichment of the RNA. The RNA-SIP experiments confirmed selective enrichment by the shift of pmoA transcripts into heavier fractions over time. Finally, high-throughput sequencing identified the active micro-organisms enriched with 13 C. CONCLUSIONS: Methanotrophs (Methylovulum spp. and Methylocystis spp.), methylotrophs (Methylotenera spp.) and denitrifiers (Hyphomicrobium spp.) were actively involved in AME-D. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to use RNA-SIP and high-throughput sequencing to determine the bacteria active within an AME-D community.


Subject(s)
Methane , Microbiota , Biofilms , High-Throughput Nucleotide Sequencing , Isotopes , Microbiota/genetics , Oxidation-Reduction , Phylogeny , RNA , RNA Probes , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...