Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 40(4): 737-744, 2019 04.
Article in English | MEDLINE | ID: mdl-30923086

ABSTRACT

BACKGROUND AND PURPOSE: Our aim was to use 2D convolutional neural networks for automatic segmentation of the spinal cord and traumatic contusion injury from axial T2-weighted MR imaging in a cohort of patients with acute spinal cord injury. MATERIALS AND METHODS: Forty-seven patients who underwent 3T MR imaging within 24 hours of spinal cord injury were included. We developed an image-analysis pipeline integrating 2D convolutional neural networks for whole spinal cord and intramedullary spinal cord lesion segmentation. Linear mixed modeling was used to compare test segmentation results between our spinal cord injury convolutional neural network (Brain and Spinal Cord Injury Center segmentation) and current state-of-the-art methods. Volumes of segmented lesions were then used in a linear regression analysis to determine associations with motor scores. RESULTS: Compared with manual labeling, the average test set Dice coefficient for the Brain and Spinal Cord Injury Center segmentation model was 0.93 for spinal cord segmentation versus 0.80 for PropSeg and 0.90 for DeepSeg (both components of the Spinal Cord Toolbox). Linear mixed modeling showed a significant difference between Brain and Spinal Cord Injury Center segmentation compared with PropSeg (P < .001) and DeepSeg (P < .05). Brain and Spinal Cord Injury Center segmentation showed significantly better adaptability to damaged areas compared with PropSeg (P < .001) and DeepSeg (P < .02). The contusion injury volumes based on automated segmentation were significantly associated with motor scores at admission (P = .002) and discharge (P = .009). CONCLUSIONS: Brain and Spinal Cord Injury Center segmentation of the spinal cord compares favorably with available segmentation tools in a population with acute spinal cord injury. Volumes of injury derived from automated lesion segmentation with Brain and Spinal Cord Injury Center segmentation correlate with measures of motor impairment in the acute phase. Targeted convolutional neural network training in acute spinal cord injury enhances algorithm performance for this patient population and provides clinically relevant metrics of cord injury.


Subject(s)
Deep Learning , Image Interpretation, Computer-Assisted/methods , Motor Disorders/etiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/diagnostic imaging , Contusions/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male
2.
AJNR Am J Neuroradiol ; 39(12): 2211-2217, 2018 12.
Article in English | MEDLINE | ID: mdl-30467218

ABSTRACT

BACKGROUND AND PURPOSE: The aging HIV-infected (HIV+) population has increased vascular comorbidities, including stroke, and increased cognitive deficits compared with the general population. Arterial spin-labeling is a technique to measure cerebral blood flow and is more sensitive than regional volume loss in assessing neurodegenerative diseases and cognitive aging. Previous studies have found global cerebral perfusion abnormalities in the HIV+ participants. In this study, we evaluated the specific regional pattern of CBF abnormalities in older HIV+ participants using quantitative whole-brain arterial spin-labeling. MATERIALS AND METHODS: CBF data from the UCSF HIV Over 60 Cohort and the Alzheimer Disease Neuroimaging Initiative were retrospectively evaluated to identify 19 HIV+ older adults, all with plasma viral suppression (including 5 with HIV-associated neurocognitive disorder); 13 healthy, age-matched controls; and 19 participants with early mild cognitive impairment. CBF values were averaged by ROI and compared among the 3 groups using generalized linear models. RESULTS: When we accounted for age, education, sex, and vascular risk factors, the HIV+ participants demonstrated alterations in regional cerebral perfusion, including hypoperfusion of bilateral temporal, parietal, and occipital brain regions compared with both clinically healthy participants and those with mild cognitive impairment. Arterial spin-labeling showed reasonable test characteristics in distinguishing those with HIV-associated neurocognitive disorder from healthy controls and participants with mild cognitive impairment. CONCLUSIONS: This study found specific CBF patterns associated with HIV status despite viral suppression-data that should animate further investigations into the pathobiologic basis of vascular and cognitive abnormalities in HIV-associated neurocognitive disorders.


Subject(s)
AIDS Dementia Complex/diagnostic imaging , AIDS Dementia Complex/physiopathology , Cerebrovascular Circulation/physiology , Neuroimaging/methods , Aged , Brain/blood supply , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Retrospective Studies , Spin Labels
3.
AJNR Am J Neuroradiol ; 39(1): 184-192, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29122760

ABSTRACT

BACKGROUND AND PURPOSE: There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. MATERIALS AND METHODS: Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. RESULTS: Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls (P = .004) compared with spinal cord atrophy (P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline (R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores (R2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas (R2 = 0.74). CONCLUSIONS: Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Gray Matter/pathology , Spinal Cord/pathology , Adult , Amyotrophic Lateral Sclerosis/diagnostic imaging , Atrophy/diagnostic imaging , Atrophy/pathology , Disease Progression , Female , Gray Matter/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Spinal Cord/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...