Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Appl Crystallogr ; 57(Pt 3): 755-769, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846770

ABSTRACT

This study reports the synthesis and crystal structure determination of a novel CrTe3 phase using various experimental and theoretical methods. The average stoichiometry and local phase separation of this quenched high-pressure phase were characterized by ex situ synchrotron powder X-ray diffraction and total scattering. Several structural models were obtained using simulated annealing, but all suffered from an imperfect Rietveld refinement, especially at higher diffraction angles. Finally, a novel stoichiometrically correct crystal structure model was proposed on the basis of electron diffraction data and refined against powder diffraction data using the Rietveld method. Scanning electron microscopy-energy-dispersive X-ray spectrometry (EDX) measurements verified the targeted 1:3 (Cr:Te) average stoichiometry for the starting compound and for the quenched high-pressure phase within experimental errors. Scanning transmission electron microscopy (STEM)-EDX was used to examine minute variations of the Cr-to-Te ratio at the nanoscale. Precession electron diffraction (PED) experiments were applied for the nanoscale structure analysis of the quenched high-pressure phase. The proposed monoclinic model from PED experiments provided an improved fit to the X-ray patterns, especially after introducing atomic anisotropic displacement parameters and partial occupancy of Cr atoms. Atomic resolution STEM and simulations were conducted to identify variations in the Cr-atom site-occupancy factor. No significant variations were observed experimentally for several zone axes. The magnetic properties of the novel CrTe3 phase were investigated through temperature- and field-dependent magnetization measurements. In order to understand these properties, auxiliary theoretical investigations have been performed by first-principles electronic structure calculations and Monte Carlo simulations. The obtained results allow the observed magnetization behavior to be interpreted as the consequence of competition between the applied magnetic field and the Cr-Cr exchange interactions, leading to a decrease of the magnetization towards T = 0 K typical for antiferromagnetic systems, as well as a field-induced enhanced magnetization around the critical temperature due to the high magnetic susceptibility in this region.

2.
Inorg Chem ; 62(27): 10655-10664, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37382207

ABSTRACT

The structure of the first lithium-containing bismuth ortho (o)-thiophosphate was determined using a combination of powder X-ray, neutron, and electron diffraction. Li60-3xBi16+x(PS4)36 with x in the range of 4.1-6.5 possesses a complex monoclinic structure [space group C2/c (No. 15)] and a large unit cell with the lattice parameters a = 15.4866 Å, b = 10.3232 Å, c = 33.8046 Å, and ß = 85.395° for Li44.4Bi21.2(PS4)36, in agreement with the structure as observed by X-ray and neutron pair distribution function analysis. The disordered distribution of lithium ions within the interstices of the dense host structure and the Li ion dynamics and diffusion pathways have been investigated by solid-state nuclear magnetic resonance (NMR) spectroscopy, pulsed field gradient NMR diffusion measurements, and bond valence sum calculations. The total lithium ion conductivities range from 2.6 × 10-7 to 2.8 × 10-6 S cm-1 at 20 °C with activation energies between 0.29 and 0.32 eV, depending on the bismuth content. Despite the highly disordered nature of lithium ions in Li60-3xBi16+x(PS4)36, the underlying dense host framework appears to limit the dimensionality of the lithium diffusion pathways and emphasizes once more the necessity of a close inspection of the structure-property relationships in solid electrolytes.

3.
J Am Chem Soc ; 144(23): 10291-10300, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35657204

ABSTRACT

As covalent organic frameworks (COFs) are coming of age, the lack of effective approaches to achieve crystalline and centimeter-scale-homogeneous COF films remains a significant bottleneck toward advancing the application of COFs in optoelectronic devices. Here, we present the synthesis of colloidal COF nanoplates, with lateral sizes of ∼200 nm and average heights of 35 nm, and their utilization as photocathodes for solar hydrogen evolution. The resulting COF nanoplate colloid exhibits a unimodal particle-size distribution and an exceptional colloidal stability without showing agglomeration after storage for 10 months and enables smooth, homogeneous, and thickness-tunable COF nanofilms via spin coating. Photoelectrodes comprising COF nanofilms were fabricated for photoelectrochemical (PEC) solar-to-hydrogen conversion. By rationally designing multicomponent photoelectrode architectures including a polymer donor/COF heterojunction and a hole-transport layer, charge recombination in COFs is mitigated, resulting in a significantly increased photocurrent density and an extremely positive onset potential for PEC hydrogen evolution (over +1 V against the reversible hydrogen electrode), among the best of classical semiconductor-based photocathodes. This work thus paves the way toward fabricating solution-processed large-scale COF nanofilms and heterojunction architectures and their use in solar-energy-conversion devices.

4.
Chem Sci ; 13(11): 3187-3193, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414880

ABSTRACT

The in-depth understanding of the reported photoelectrochemical properties of the layered carbon nitride, poly(triazine imide)/LiCl (PTI/LiCl), has been limited by the apparent disorder of the Li/H atoms within its framework. To understand and resolve the current structural ambiguities, an optimized one-step flux synthesis (470 °C, 36 h, LiCl/KCl flux) was used to prepare PTI/LiCl and deuterated-PTI/LiCl in high purity. Its structure was characterized by a combination of neutron/X-ray diffraction and transmission electron microscopy. The range of possible Li/H atomic configurations was enumerated for the first time and, combined with total energy calculations, reveals a more complex energetic landscape than previously considered. Experimental data were fitted against all possible structural models, exhibiting the most consistency with a new orthorhombic model (Sp. Grp. Ama2) that also has the lowest total energy. In addition, a new Cu(i)-containing PTI (PTI/CuCl) was prepared with the more strongly scattering Cu(i) cations in place of Li, and most closely matching with the partially-disorder structure in Cmc21. Thus, a complex configurational landscape of PTI is revealed to consist of a number of ordered crystalline structures that are new potential synthetic targets, such as with the use of metal-exchange reactions.

5.
Adv Mater ; 34(7): e2107061, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34870342

ABSTRACT

Carbon nitrides are among the most studied materials for photocatalysis; however, limitations arise from inefficient charge separation and transport within the material. Here, this aspect is addressed in the 2D carbon nitride poly(heptazine imide) (PHI) by investigating the influence of various counterions, such as M = Li+ , Na+ , K+ , Cs+ , Ba2+ , NH4 + , and tetramethyl ammonium, on the material's conductivity and photocatalytic activity. These ions in the PHI pores affect the stacking of the 2D layers, which further influences the predominantly ionic conductivity in M-PHI. Na-containing PHI outperforms the other M-PHIs in various relative humidity (RH) environments (0-42%RH) in terms of conductivity, likely due to pore-channel geometry and size of the (hydrated) ion. With increasing RH, the ionic conductivity increases by 4-5 orders of magnitude (for Na-PHI up to 10-5 S cm-1 at 42%RH). At the same time, the highest photocatalytic hydrogen evolution rate is observed for Na-PHI, which is mirrored by increased photogenerated charge-carrier lifetimes, pointing to efficient charge-carrier stabilization by, e.g., mobile ions. These results indicate that also ionic conductivity is an important parameter that can influence the photocatalytic activity. Besides, RH-dependent ionic conductivity is of high interest for separators, membranes, or sensors.

6.
J Am Chem Soc ; 143(9): 3430-3438, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33626275

ABSTRACT

Covalent organic frameworks have emerged as a powerful synthetic platform for installing and interconverting dedicated molecular functions on a crystalline polymeric backbone with atomic precision. Here, we present a novel strategy to directly access amine-linked covalent organic frameworks, which serve as a scaffold enabling pore-wall modification and linkage-interconversion by new synthetic methods based on Leuckart-Wallach reduction with formic acid and ammonium formate. Frameworks connected entirely by secondary amine linkages, mixed amine/imine bonds, and partially formylated amine linkages are obtained in a single step from imine-linked frameworks or directly from corresponding linkers in a one-pot crystallization-reduction approach. The new, 2D amine-linked covalent organic frameworks, rPI-3-COF, rTTI-COF, and rPy1P-COF, are obtained with high crystallinity and large surface areas. Secondary amines, installed as reactive sites on the pore wall, enable further postsynthetic functionalization to access tailored covalent organic frameworks, with increased hydrolytic stability, as potential heterogeneous catalysts.

7.
ACS Appl Mater Interfaces ; 12(37): 42248-42263, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32813500

ABSTRACT

In this study, a strategy to prepare CuO/Cu2O/Cu microwires that are fully covered by a nanowire (NW) network using a simple thermal-oxidation process is developed. The CuO/Cu2O/Cu microwires are fixed on Au/Cr pads with Cu microparticles. After thermal annealing at 425 °C, these CuO/Cu2O/Cu microwires are used as room-temperature 2-propanol sensors. These sensors show different dominating gas responses with operating temperatures, e.g., higher sensitivity to ethanol at 175 °C, higher sensitivity to 2-propanol at room temperature and 225 °C, and higher sensitivity to hydrogen gas at ∼300 °C. In this context, we propose the sensing mechanism of this three-in-one sensor based on CuO/Cu2O/Cu. X-ray diffraction (XRD) studies reveal that the annealing time during oxidation affects the chemical appearance of the sensor, while the intensity of reflections proves that for samples oxidized at 425 °C for 1 h the dominating phase is Cu2O, whereas upon further increasing the annealing duration up to 5 h, the CuO phase becomes dominant. The crystal structures of the Cu2O-shell/Cu-core and the CuO NW networks on the surface were confirmed with a transmission electron microscope (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED), where (HR)TEM micrographs reveal the monoclinic CuO phase. Density functional theory (DFT) calculations bring valuable inputs to the interactions of the different gas molecules with the most stable top surface of CuO, revealing strong binding, electronic band-gap changes, and charge transfer due to the gas molecule interactions with the top surface. This research shows the importance of the nonplanar CuO/Cu2O layered heterostructure as a bright nanomaterial for the detection of various gases, controlled by the working temperature, and the insight presented here will be of significant value in the fabrication of new p-type sensing devices through simple nanotechnology.

8.
Matter ; 3(2): 464-486, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32803152

ABSTRACT

Quantitative comparison of photocatalytic performances across different photocatalysis setups is technically challenging. Here, we combine the concepts of relative and optimal photonic efficiencies to normalize activities with an internal benchmark material, RuO2 photodeposited on a P25-TiO2 photocatalyst, which was optimized for reproducibility of the oxygen evolution reaction (OER). Additionally, a general set of good practices was identified to ensure reliable quantification of photocatalytic OER, including photoreactor design, photocatalyst dispersion, and control of parasitic reactions caused by the sacrificial electron acceptor. Moreover, a method combining optical modeling and measurements was proposed to quantify the benchmark absorbed and scattered light (7.6% and 81.2%, respectively, of λ = 300-500 nm incident photons), rather than just incident light (≈AM 1.5G), to estimate its internal quantum efficiency (16%). We advocate the adoption of the instrumental and theoretical framework provided here to facilitate material standardization and comparison in the field of artificial photosynthesis.

9.
Nanoscale Adv ; 2(5): 2114-2126, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132514

ABSTRACT

3D networks of Al-doped ZnO tetrapods decorated with ZnAl2O4 particles synthesised by the flame transport method were investigated in detail using optical techniques combined with morphological/structural characterisation. Low temperature photoluminescence (PL) measurements revealed spectra dominated by near band edge (NBE) recombination in the UV region, together with broad visible bands whose peak positions shift depending on the ZnO : Al mixing ratios. A close inspection of the NBE region evidences the effective doping of the ZnO structures with Al, as corroborated by the broadening and shift of its peak position towards the expected energy associated with the exciton bound to Al. Both temperature and excitation density-dependent PL results pointed to an overlap of multiple optical centres contributing to the broad visible band, with the peak position dependent on the Al content. While in the reference sample the wavelength of the green band remained unchanged with temperature, in the case of the composites, the deep level emission showed a blue shift with increasing temperature, likely due to distinct thermal quenching of the overlapping emitting centres. This assumption was further validated by the time-resolved PL data, which clearly exposed the presence of more than one optical centre in this spectral region. PL excitation analysis demonstrated that the luminescence features of the Al-doped ZnO/ZnAl2O4 composites revealed noticeable changes not only in deep level recombination, but also in the material's bandgap when compared with the ZnO reference sample. At room temperature, the ZnO reference sample exhibited free exciton resonance at ∼3.29 eV, whereas the peak position for the Al-doped ZnO/ZnAl2O4 samples occurred at ∼3.38 eV due to the Burstein-Moss shift, commonly observed in heavily doped semiconductors. Considering the energy shift observed and assuming a parabolic conduction band, a carrier concentration of ∼1.82 ×1019 cm-3 was estimated for the Al-doped ZnO/ZnAl2O4 samples.

10.
Small ; 16(2): e1905141, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31814275

ABSTRACT

The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1- x Znx )(N1- x Ox ) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies.

11.
J Appl Crystallogr ; 52(Pt 5): 1009-1015, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31636519

ABSTRACT

The examination of anisotropic nanostructures, such as wires, platelets or spikes, inside a transmission electron microscope is normally performed only in plan view. However, intrinsic defects such as growth twin interfaces could occasionally be concealed from direct observation for geometric reasons, leading to superposition. This article presents the shadow-focused ion-beam technique to prepare multiple electron-beam-transparent cross-section specimens of ZnO nanospikes, via a procedure which could be readily extended to other anisotropic structures. In contrast with plan-view data of the same nanospikes, here the viewing direction allows the examination of defects without superposition. By this method, the coexistence of two twin configurations inside the wurtzite-type structure is observed, namely and , which were not identified during the plan-view observations owing to superposition of the domains. The defect arrangement could be the result of coalescence twinning of crystalline nuclei formed on the partially molten Zn substrate during the flame-transport synthesis. Three-dimensional defect models of the twin interface structures have been derived and are correlated with the plan-view investigations by simulation.

12.
Chem Mater ; 31(18): 7478-7486, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31582875

ABSTRACT

Solving the structure of carbon nitrides has been a long-standing challenge due to the low crystallinity and complex structures observed within this class of earth-abundant photocatalysts. Herein, we report on two-dimensional layered potassium poly(heptazine imide) (K-PHI) and its proton-exchanged counterpart (H-PHI), obtained by ionothermal synthesis using a molecular precursor route. We present a comprehensive analysis of the in-plane and three-dimensional structure of PHI. Transmission electron microscopy and solid-state NMR spectroscopy, supported by quantum-chemical calculations, suggest a planar, imide-bridged heptazine backbone with trigonal symmetry in both K-PHI and H-PHI, whereas pair distribution function analyses and X-ray powder diffraction using recursive-like simulations of planar defects point to a structure-directing function of the pore content. While the out-of-plane structure of K-PHI exhibits a unidirectional layer offset, mediated by hydrated potassium ions, H-PHI is characterized by a high degree of stacking faults due to the weaker structure directing influence of pore water. Structure-property relationships in PHI reveal that a loss of in-plane coherence, materializing in smaller lateral platelet dimensions and increased terminal cyanamide groups, correlates with improved photocatalytic performance. Size-optimized H-PHI is highly active toward photocatalytic hydrogen evolution, with a rate of 3363 µmol/gh H2 placing it on par with the most active carbon nitrides. K- and H-PHI adopt a uniquely long-lived photoreduced polaronic state in which light-induced electrons are stored for more than 6 h in the dark and released upon addition of a Pt cocatalyst. This work highlights the importance of structure-property relationships in carbon nitrides for the rational design of highly active hydrogen evolution photocatalysts.

13.
Nat Commun ; 10(1): 3046, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31292449

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Dalton Trans ; 48(25): 9250-9259, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31161177

ABSTRACT

Powder samples of Ag3LiIr2O6 and Ag3LiRu2O6 were synthesized from α-Li2IrO3 and Li2RuO3 respectively by ion exchange in an AgNO3 melt. The crystal structures of the title compounds were solved from high resolution laboratory X-ray powder diffraction (XRPD) patterns and from pair distribution function (PDF) analysis using synchrotron X-ray powder diffraction data. In both crystal structures edge sharing LiO6/3- and (Ir/Ru)O6/3-octahedra form honeycomb like layers that are stacked in a staggered fashion. Silver cations, situated in-between the layers mediate the interlayer interactions by linear O-Ag-O bonds. Anisotropic peak broadening in the XRPD patterns and diffuse scattering occurring as streaks in the precession electron diffraction (PED) patterns indicate the presence of stacking faults, which could be also visualized by high resolution transmission electron microscopy (HRTEM). Possible alternative stacking sequences were derived from the ideal crystal and incorporated into a microstructure model. By applying a supercell approach that randomly generates and averages stacking sequences based on transition probabilities and combining it with a grid search algorithm, the microstructures, i.e. the degrees of faulting in the structures of the title compounds were refined to the measured XRPD data. In result the crystal structures of Ag3LiIr2O6 and Ag3LiRu2O6 were found to be vastly faulted with almost no coherence of the stacked layers.

15.
Nat Commun ; 10(1): 2689, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217421

ABSTRACT

Covalent organic frameworks (COFs) are typically designed by breaking down the desired network into feasible building blocks - either simple and highly symmetric, or more convoluted and thus less symmetric. The linkers are chosen complementary to each other such that an extended, fully condensed network structure can form. We show not only an exception, but a design principle that allows breaking free of such design rules. We show that tri- and tetratopic linkers can be combined to form imine-linked [4 + 3] sub-stoichiometric 2D COFs featuring an unexpected bex net topology, and with periodic uncondensed amine functionalities which enhance CO2 adsorption, can be derivatized in a subsequent reaction, and can also act as organocatalysts. We further extend this class of nets by including a ditopic linker to form [4 + 3 + 2] COFs. The results open up possibilities towards a new class of sub-valent COFs with unique structural, topological and compositional complexities for diverse applications.

16.
Angew Chem Int Ed Engl ; 58(24): 8087-8091, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31002447

ABSTRACT

A big challenge for nonlinear optical (NLO) materials is the application in high power lasers, which needs the simultaneous occurrence of large second harmonic generation (SHG) and high laser induced damage threshold (LIDT). Herein we report the preparation of a new Ga2 Se3 phase, which shows the SHG intensities of around 2.3 times and the LIDT of around 16.7 times those of AgGaS2 (AGS), respectively. In addition, its IR transparent window ca. 0.59-25 µm is also significantly wider than that of AGS (ca. 0.48-≈11.4 µm). The occurrence of the strong SHG responses and good phase-matching indicate that the structure of the new Ga2 Se3 phase can only be non-centrosymmetric and have a lower symmetry than the cubic γ-phase. The observed excellent SHG and phase-matching properties are consistent with our diffraction experiments and can be well explained by using the orthorhombic models obtained through our high throughput simulations.

17.
RSC Adv ; 9(32): 18547-18558, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-35515245

ABSTRACT

The single-step incorporation of multiple immiscible elements into colloidal high-entropy alloy (HEA) nanoparticles has manifold technological potential, but it continues to be a challenge for state-of-the-art synthesis methods. Hence, the development of a synthesis approach by which the chemical composition and phase of colloidal HEA nanoparticles can be controlled could lead to a new pool of nanoalloys with unparalleled functionalities. Herein, this study reports the single-step synthesis of colloidal CoCrFeMnNi HEA nanoparticles with targeted equimolar stoichiometry and diameters less than 5 nm by liquid-phase, ultrashort-pulsed laser ablation of the consolidated and heat-treated micropowders of the five constituent metals. Further, the scalability of the process with an unprecedented productivity of 3 grams of colloidal HEA nanoparticles per hour is demonstrated. Electrochemical analysis reveals a unique redox behavior of the particles' surfaces in an alkaline environment and a potential for future application as a heterogeneous catalyst for the oxygen evolution reaction.

18.
Appl Microsc ; 49(1): 1, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-33580303

ABSTRACT

Joints of three-dimensional (3D) rutile-type (r) tin dioxide (SnO2) nanowire networks, produced by the flame transport synthesis (FTS), are formed by coherent twin boundaries at (101)r serving for the interpenetration of the nanowires. Transmission electron microscopy (TEM) methods, i.e. high resolution and (precession) electron diffraction (PED), were utilized to collect information of the atomic interface structure along the edge-on zone axes [010]r, [111]r and superposition directions [001]r, [101]r. A model of the twin boundary is generated by a supercell approach, serving as base for simulations of all given real and reciprocal space data as for the elaboration of three-dimensional, i.e. relrod and higher order Laue zones (HOLZ), contributions to the intensity distribution of PED patterns. Confirmed by the comparison of simulated and experimental findings, details of the structural distortion at the twin boundary can be demonstrated.

19.
Nat Commun ; 9(1): 2600, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968723

ABSTRACT

Stabilization of covalent organic frameworks (COFs) by post-synthetic locking strategies is a powerful tool to push the limits of COF utilization, which are imposed by the reversible COF linkage. Here we introduce a sulfur-assisted chemical conversion of a two-dimensional imine-linked COF into a thiazole-linked COF, with full retention of crystallinity and porosity. This post-synthetic modification entails significantly enhanced chemical and electron beam stability, enabling investigation of the real framework structure at a high level of detail. An in-depth study by electron diffraction and transmission electron microscopy reveals a myriad of previously unknown or unverified structural features such as grain boundaries and edge dislocations, which are likely generic to the in-plane structure of 2D COFs. The visualization of such real structural features is key to understand, design and control structure-property relationships in COFs, which can have major implications for adsorption, catalytic, and transport properties of such crystalline porous polymers.

20.
Sci Adv ; 4(2): eaar2317, 2018 02.
Article in English | MEDLINE | ID: mdl-29492459

ABSTRACT

Recent interest in topological semimetals has led to the proposal of many new topological phases that can be realized in real materials. Next to Dirac and Weyl systems, these include more exotic phases based on manifold band degeneracies in the bulk electronic structure. The exotic states in topological semimetals are usually protected by some sort of crystal symmetry, and the introduction of magnetic order can influence these states by breaking time-reversal symmetry. We show that we can realize a rich variety of different topological semimetal states in a single material, CeSbTe. This compound can exhibit different types of magnetic order that can be accessed easily by applying a small field. Therefore, it allows for tuning the electronic structure and can drive it through a manifold of topologically distinct phases, such as the first nonsymmorphic magnetic topological phase with an eightfold band crossing at a high-symmetry point. Our experimental results are backed by a full magnetic group theory analysis and ab initio calculations. This discovery introduces a realistic and promising platform for studying the interplay of magnetism and topology. We also show that we can generally expand the numbers of space groups that allow for high-order band degeneracies by introducing antiferromagnetic order.

SELECTION OF CITATIONS
SEARCH DETAIL
...