Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(11): 11317-11329, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29053246

ABSTRACT

Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

2.
Proc Natl Acad Sci U S A ; 112(31): 9591-5, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26195734

ABSTRACT

We report a novel spherical nucleic acid (SNA) gold nanoparticle conjugate, termed the Sticky-flare, which enables facile quantification of RNA expression in live cells and spatiotemporal analysis of RNA transport and localization. The Sticky-flare is capable of entering live cells without the need for transfection agents and recognizing target RNA transcripts in a sequence-specific manner. On recognition, the Sticky-flare transfers a fluorophore-conjugated reporter to the transcript, resulting in a turning on of fluorescence in a quantifiable manner and the fluorescent labeling of targeted transcripts. The latter allows the RNA to be tracked via fluorescence microscopy as it is transported throughout the cell. We use this novel nanoconjugate to analyze the expression level and spatial distribution of ß-actin mRNA in HeLa cells and to observe the real-time transport of ß-actin mRNA in mouse embryonic fibroblasts. Furthermore, we investigate the application of Sticky-flares for tracking transcripts that undergo more extensive compartmentalization by fluorophore-labeling U1 small nuclear RNA and observing its distribution in the nucleus of live cells.


Subject(s)
Cell Tracking/methods , Computer Systems , RNA/metabolism , Actins/genetics , Actins/metabolism , Animals , Base Sequence , Cell Survival , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Gene Knockdown Techniques , Gold/chemistry , HeLa Cells , Humans , Intracellular Space/metabolism , Metal Nanoparticles/chemistry , Mice , Mitochondria/metabolism , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
ACS Nano ; 7(11): 10405-13, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24138326

ABSTRACT

We use frequency-modulated electrostatic force microscopy to track changes in cantilever quality factor (Q) as a function of photochemical damage in a model organic photovoltaic system poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and 3'H-cyclopropa[8,25][5,6]fullerene-C71-D5h(6)-3'-butanoic acid, 3'-phenyl-, methyl ester (PC71BM). We correlate local Q factor imaging with macroscopic device performance and show that, for this system, changes in cantilever Q correlate well with changes in external quantum efficiency and can thus be used to monitor local photochemical damage over the entire functional lifetime of a PTB7:PC71BM solar cell. We explore how Q imaging is affected by the choice of cantilever resonance frequency. Finally, we use Q imaging to elucidate the differences in the evolution of nanoscale structure in the photochemical damage occurring in PTB7:PC71BM solar cells processed with and without the solvent additive 1,8-diiodooctane (DIO). We show that processing with DIO not only yields a preferable morphology for uniform performance across the surface of the device but also enhances the stability of PTB7:PC71BM solar cells-an effect that can be predicted based on the local Q images.

SELECTION OF CITATIONS
SEARCH DETAIL
...