Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 53(6): 1294-1302, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33433150

ABSTRACT

PURPOSE: A decision tree based on a clinicophysiological score (severe high-altitude illness (SHAI) score) has been developed to detect subjects susceptible to SHAI. We aimed to validate this decision tree, to rationalize the prescription of acetazolamide (ACZ), and to specify the rule for a progressive acclimatization. METHODS: Data were obtained from 641 subjects in 15 European medical centers before and during a sojourn at high altitude. Depending on the value of the SHAI score, advice was given and ACZ was eventually prescribed. The outcome was the occurrence of SHAI at high altitude as a function of the SHAI score, ACZ prescription, and use and fulfillment of the acclimatization rule. RESULTS: The occurrence of SHAI was 22.6%, similar to what was observed 18 yr before (23.7%), whereas life-threatening forms of SHAI (high-altitude pulmonary and cerebral edema) were less frequent (2.6%-0.8%, P = 0.007). The negative predictive value of the decision tree based was 81%, suggesting that the procedure is efficient to detect subjects who will not suffer from SHAI, therefore limiting the use of ACZ. The maximal daily altitude gain that limits the occurrence of SHAI was established at 400 m. The occurrence of SHAI was reduced from 27% to 12% when the recommendations for ACZ use and 400-m daily altitude gain were respected (P < 0.001). CONCLUSIONS: This multicenter study confirmed the interest of the SHAI score in predicting the individual risk for SHAI. The conditions for an optimized acclimatization (400-m rule) were also specified, and we proposed a rational decision tree for the prescription of ACZ, adapted to each individual tolerance to hypoxia.


Subject(s)
Acetazolamide/therapeutic use , Altitude Sickness/diagnosis , Altitude Sickness/prevention & control , Anticonvulsants/therapeutic use , Decision Trees , Acclimatization , Adult , Female , Humans , Male , Medication Adherence , Middle Aged , Risk Factors
2.
Eur J Appl Physiol ; 108(6): 1209-16, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20033703

ABSTRACT

The purpose of this study was to test the hypothesis that mountaineering experience decreases the net oxygen cost of uphill walking (OCw) on steep mountain trails and in ice and snow conditions. OCw was measured during an ascent of Mont Blanc in eight experienced alpinists and eight non-alpinists who were matched for sex (4 + 4) and low-altitude aerobic power (V(O)(2)(max) 50-55 ml kg(-1) min(-1)). Subjects carried a breath-by-breath gas exchange analyzer and a GPS. V(O)(2)(max) at altitude was estimated from measured low-altitude V(O)(2)(max) using Bassett's equation to calculate fractional use of V(O)(2)(max) during the ascent (FV(O)(2)(max)). OCw was calculated as the difference between V(O)(2) while climbing minus resting V(O)(2). At all elevations, Alpinists exhibited a lower OCw (P < 0.01). In all subjects, OCw increased when encountering ice and snow conditions. FV(O)(2)(max) remained stable around 75% at all elevations independent of experience or sex. In conclusion, the OCw is lower in experienced mountaineers compared to non-experienced subjects, and increases when going from steep rocky mountain terrain to ice and snow conditions, independent of mountaineering experience or sex.


Subject(s)
Acclimatization/physiology , Altitude , Locomotion/physiology , Oxygen Consumption/physiology , Oxygen/metabolism , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...