Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(10): 107764, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37736038

ABSTRACT

Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.

2.
Emerg Infect Dis ; 26(9)2020 09.
Article in English | MEDLINE | ID: mdl-32568661

ABSTRACT

We aerosolized severe acute respiratory syndrome coronavirus 2 and determined that its dynamic aerosol efficiency surpassed those of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome. Although we performed experiment only once across several laboratories, our findings suggest retained infectivity and virion integrity for up to 16 hours in respirable-sized aerosols.


Subject(s)
Aerosols/isolation & purification , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Disease Transmission, Infectious , Pneumonia, Viral/transmission , Suspensions/isolation & purification , COVID-19 , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
3.
J Gen Virol ; 100(12): 1593-1594, 2019 12.
Article in English | MEDLINE | ID: mdl-31609197

ABSTRACT

The family Paramyxoviridae consists of large enveloped RNA viruses infecting mammals, birds, reptiles and fish. Many paramyxoviruses are host-specific and several, such as measles virus, mumps virus, Nipah virus, Hendra virus and several parainfluenza viruses, are pathogenic for humans. The transmission of paramyxoviruses is horizontal, mainly through airborne routes; no vectors are known. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the family Paramyxoviridae. which is available at ictv.global/report/paramyxoviridae.


Subject(s)
DNA Barcoding, Taxonomic , Paramyxoviridae/classification , Paramyxoviridae/genetics , DNA Barcoding, Taxonomic/methods , Databases, Factual , Humans , Paramyxoviridae/physiology , Paramyxoviridae/ultrastructure , Web Browser
4.
PLoS One ; 14(7): e0219168, 2019.
Article in English | MEDLINE | ID: mdl-31276568

ABSTRACT

In reverse genetic experiments we have isolated recombinant mumps viruses (rMuV) that carry large numbers of mutations clustered in small parts of their genome, which are not caused by biased hyper-mutation. In two separate experiments we obtained such recombinant viruses: one virus had 11 mutations in the V/P region of the genome; the other, which also contained an extra transcription unit encoding green fluorescent protein (EGFP), had 32 mutations in the N gene. These specific sets of mutations have not been observed in naturally occurring MuV isolates. Unusually, the vast majority of the mutations (48/51) were synonymous. On passage in Vero cells and human B-LCL cells, a B lymphocyte-like cell line, these mutations appear stable as no reversion occurred to the original consensus sequence, although mutations in other parts of the genome occurred and changed in frequency during passage. Defective interfering RNAs accumulate in passage in Vero cells but not in B-LCL cells. Interestingly, in all passaged samples the level of variation in the EGFP gene is the same as in the viral genes, though it is unlikely that this gene is under any functionality constraint. What mechanism gave rise to these viruses with clustered mutations and their stability remains an open question, which is likely of interest to a wider field than mumps reverse genetics.


Subject(s)
DNA, Complementary/genetics , Mumps virus/physiology , Mutation , Viral Proteins/genetics , Animals , Cell Line, Tumor , Chlorocebus aethiops , Green Fluorescent Proteins/genetics , Humans , Mumps virus/genetics , Reverse Genetics/methods , Serial Passage , Vero Cells , Virus Replication
5.
J Gen Virol ; 93(Pt 3): 565-576, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22170635

ABSTRACT

The cytidine deaminase APOBEC3G (apolipoprotein B mRNA-editing enzyme-catalytic polypeptide 3G; A3G) exerts antiviral activity against retroviruses, hepatitis B virus, adeno-associated virus and transposable elements. We assessed whether the negative-strand RNA viruses measles, mumps and respiratory syncytial might be affected by A3G, and found that their infectivity was reduced by 1-2 logs (90-99 %) in A3G overexpressing Vero cells, and in T-cell lines expressing A3G at physiological levels. Viral RNA was co-precipitated with HA-tagged A3G and could be amplified by RT-PCR. Interestingly, A3G reduced viral transcription and protein expression in infected cells by 50-70 %, and caused an increased mutation frequency of 0.95 mutations per 1000 nt in comparison to the background level of 0.22/1000. The observed mutations were not specific for A3G [cytidine to uridine (C→U) or guanine to adenine (G→A) hypermutations], nor specific for ADAR (adenosine deaminase acting on RNA, A→G and U→C transitions, with preference for next neighbour-nucleotides U = A>C>G). In addition, A3G mutants with inactivated catalytic deaminase (H257R and E259Q) were inhibitory, indicating that the deaminase activity is not required for the observed antiviral activity. In combination, impaired transcription and increased mutation frequencies are sufficient to cause the observed reduction in viral infectivity and eliminate virus replication within a few passages in A3G-expressing cells.


Subject(s)
Cytidine Deaminase/metabolism , Measles virus/pathogenicity , Mumps virus/pathogenicity , Respiratory Syncytial Viruses/pathogenicity , Virus Replication , APOBEC-3G Deaminase , Animals , Antiviral Agents/metabolism , Cell Line , Cytidine Deaminase/immunology , Humans , Measles virus/growth & development , Measles virus/immunology , Mumps virus/growth & development , Mumps virus/immunology , Point Mutation , RNA, Viral/genetics , Respiratory Syncytial Viruses/growth & development , Respiratory Syncytial Viruses/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...