Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 29(3): 512-523, 2021 03.
Article in English | MEDLINE | ID: mdl-33139852

ABSTRACT

The influence of Viking-Age migrants to the British Isles is obvious in archaeological and place-names evidence, but their demographic impact has been unclear. Autosomal genetic analyses support Norse Viking contributions to parts of Britain, but show no signal corresponding to the Danelaw, the region under Scandinavian administrative control from the ninth to eleventh centuries. Y-chromosome haplogroup R1a1 has been considered as a possible marker for Viking migrations because of its high frequency in peninsular Scandinavia (Norway and Sweden). Here we select ten Y-SNPs to discriminate informatively among hg R1a1 sub-haplogroups in Europe, analyse these in 619 hg R1a1 Y chromosomes including 163 from the British Isles, and also type 23 short-tandem repeats (Y-STRs) to assess internal diversity. We find three specifically Western-European sub-haplogroups, two of which predominate in Norway and Sweden, and are also found in Britain; star-like features in the STR networks of these lineages indicate histories of expansion. We ask whether geographical distributions of hg R1a1 overall, and of the two sub-lineages in particular, correlate with regions of Scandinavian influence within Britain. Neither shows any frequency difference between regions that have higher (≥10%) or lower autosomal contributions from Norway and Sweden, but both are significantly overrepresented in the region corresponding to the Danelaw. These differences between autosomal and Y-chromosomal histories suggest either male-specific contribution, or the influence of patrilocality. Comparison of modern DNA with recently available ancient DNA data supports the interpretation that two sub-lineages of hg R1a1 spread with the Vikings from peninsular Scandinavia.


Subject(s)
Chromosomes, Human, Y/genetics , Haplotypes , Human Migration , Evolution, Molecular , Humans , Male , Minisatellite Repeats , Pedigree , Polymorphism, Single Nucleotide , Scandinavian and Nordic Countries , United Kingdom
2.
Nat Commun ; 6: 7152, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25988751

ABSTRACT

The proportion of Europeans descending from Neolithic farmers ∼ 10 thousand years ago (KYA) or Palaeolithic hunter-gatherers has been much debated. The male-specific region of the Y chromosome (MSY) has been widely applied to this question, but unbiased estimates of diversity and time depth have been lacking. Here we show that European patrilineages underwent a recent continent-wide expansion. Resequencing of 3.7 Mb of MSY DNA in 334 males, comprising 17 European and Middle Eastern populations, defines a phylogeny containing 5,996 single-nucleotide polymorphisms. Dating indicates that three major lineages (I1, R1a and R1b), accounting for 64% of our sample, have very recent coalescent times, ranging between 3.5 and 7.3 KYA. A continuous swathe of 13/17 populations share similar histories featuring a demographic expansion starting ∼ 2.1-4.2 KYA. Our results are compatible with ancient MSY DNA data, and contrast with data on mitochondrial DNA, indicating a widespread male-specific phenomenon that focuses interest on the social structure of Bronze Age Europe.


Subject(s)
Sequence Analysis, DNA , Bayes Theorem , Biological Evolution , Computer Simulation , DNA, Mitochondrial/genetics , Demography , Emigration and Immigration , Ethnicity/genetics , Europe , Genetic Variation , Genetics, Population , Genomics , Geography , Haplotypes , History, Ancient , Humans , Male , Middle East , Mutation , Phylogeny , Population Dynamics , White People/genetics
3.
Mol Biol Evol ; 32(3): 661-73, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25468874

ABSTRACT

Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes.


Subject(s)
Chromosomes, Human, Y/genetics , Polymorphism, Single Nucleotide/genetics , Evolution, Molecular , HapMap Project , Humans , Male , Phylogeny , Sequence Analysis, DNA
4.
Forensic Sci Int ; 164(1): 10-9, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16337760

ABSTRACT

Y-chromosomal variation at five biallelic markers (Tat, YAP, 12f2, SRY(10831) and 92R7) and nine multiallelic short tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385I/II and DYS388) in a Norwegian population sample are presented. The material consists of 1766 unrelated males of Norwegian origin. The geographical distribution of the population sample reflects fairly well the population distribution around the year 1942, which is the median birth year of the index persons. Seven hundred and twenty-one different Y-STR haplotypes but 726 different lineages (Y-STRs plus biallelic markers) were encountered. We observed six known (P*(xR1a), BR(xDE, J, N3, P), R1a, N3, DE, J), and one previously undescribed haplogroup (probably a subgroup within haplogroup P*(xR1a)). Four of the haplogroups (P*(xR1a), BR(xDE, J, N3, P), R1a and N3) represented about 98% of the population sample. The analysis of population pairwise differences indicates that the Norwegian Y-chromosome distribution most closely resembles those observed in Iceland, Germany, the Netherlands and Denmark. Within Norway, geographical substructuring was observed between regions and counties. The substructuring reflects to some extent the European Y-chromosome gradients, with higher frequency of P*(xR1a) in the south-west and of R1a in the east. Heterogeneity in major founder groups, geographical isolation, severe epidemics, historical trading links and population movements may have led to population stratification and have most probably contributed to the observed regional differences in distribution of haplotypes within two of the major haplogroups.


Subject(s)
Chromosomes, Human, Y , Genetic Heterogeneity , Genetics, Population , Analysis of Variance , DNA Fingerprinting , Forensic Genetics , Genetic Markers , Haplotypes , Humans , Male , Norway , Phylogeny , Polymerase Chain Reaction , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...