Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
2.
JHEP Rep ; 6(2): 100913, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304236

ABSTRACT

Background & Aims: Hepatocellular adenomas (HCAs) are rare, benign, liver tumours classified at the clinicopathological, genetic, and proteomic levels. The ß-catenin-activated (b-HCA) subtypes harbour several mutation types in the ß-catenin gene (CTNNB1) associated with different risks of malignant transformation or bleeding. Glutamine synthetase is a surrogate marker of ß-catenin pathway activation associated with the risk of malignant transformation. Recently, we revealed an overexpression of glutamine synthetase in the rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA compared with the rest of the tumour. A difference in vascularisation was found in this rim shown by diffuse CD34 staining only at the tumour centre. Here, we aimed to characterise this tumour heterogeneity to better understand its physiopathological involvement. Methods: Using mass spectrometry imaging, genetic, and proteomic analyses combined with laser capture microdissection, we compared the tumour centre with the tumour rim and with adjacent non-tumoural tissue. Results: The tumour rim harboured the same mutation as the tumour centre, meaning both parts belong to the same tumour. Mass spectrometry imaging showed different spectral profiles between the rim and the tumour centre. Proteomic profiling revealed the significant differential expression of 40 proteins at the rim compared with the tumour centre. The majority of these proteins were associated with metabolism, with an expression profile comparable with a normal perivenous hepatocyte expression profile. Conclusions: The difference in phenotype between the tumour centres and tumour rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA does not depend on CTNNB1 mutational status. In a context of sinusoidal arterial pathology, tumour heterogeneity at the rim harbours perivenous characteristics and could be caused by a functional peripheral venous drainage. Impact and implications: Tumour heterogeneity was revealed in ß-catenin-mutated hepatocellular adenomas (b-HCAs) via the differential expression of glutamine synthase at tumour rims. The combination of several spatial approaches (mass spectrometry imaging, genetic, and proteomic analyses) after laser capture microdissection allowed identification of a potential role for peripheral venous drainage underlying this difference. Through this study, we were able to illustrate that beyond a mutational context, many factors can downstream regulate gene expression and contribute to different clinicopathological phenotypes. We believe that the combinations of spatial analyses that we used could be inspiring for all researchers wanting to access heterogeneity information of liver tumours.

3.
Cell Death Dis ; 15(1): 46, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218945

ABSTRACT

Entosis is a process that leads to the formation of cell-in-cell structures commonly found in cancers. Here, we identified entosis in hepatocellular carcinoma and the loss of Rnd3 (also known as RhoE) as an efficient inducer of this mechanism. We characterized the different stages and the molecular regulators of entosis induced after Rnd3 silencing. We demonstrated that this process depends on the RhoA/ROCK pathway, but not on E-cadherin. The proteomic profiling of entotic cells allowed us to identify LAMP1 as a protein upregulated by Rnd3 silencing and implicated not only in the degradation final stage of entosis, but also in the full mechanism. Moreover, we found a positive correlation between the presence of entotic cells and the metastatic potential of tumors in human patient samples. Altogether, these data suggest the involvement of entosis in liver tumor progression and highlight a new perspective for entosis analysis in medicine research as a novel therapeutic target.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Entosis , Proteomics , Transcription Factors , rho GTP-Binding Proteins , Lysosomal-Associated Membrane Protein 1
4.
Adv Healthc Mater ; 13(6): e2303370, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37942849

ABSTRACT

Bioprinting applications in the clinical field generate great interest, but developing suitable biomaterial inks for medical settings is a challenge. Placental tissues offer a promising solution due to their abundance, stability, and status as medical waste. They contain basement membrane components, have a clinical history, and support angiogenesis. This study formulates bioinks from two placental tissues, amnion (AM) and chorion (CHO), and compares their unique extracellular matrix (ECM) and growth factor compositions. Rheological properties of the bioinks are evaluated for bioprinting and maturation of human endothelial cells. Both AM and Cho-derived bioinks sustained human endothelial cell viability, proliferation, and maturation, promoting optimal vasculogenesis. These bioinks derived from human sources have significant potential for tissue engineering applications, particularly in supporting vasculogenesis. This research contributes to the advancement of tissue engineering and regenerative medicine, bringing everyone closer to clinically viable bioprinting solutions using placental tissues as valuable biomaterials.


Subject(s)
Bioprinting , Female , Pregnancy , Humans , Endothelial Cells , Placenta , Amnion , Basement Membrane , Biocompatible Materials
5.
Elife ; 122023 11 07.
Article in English | MEDLINE | ID: mdl-37934199

ABSTRACT

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Subject(s)
Asthenozoospermia , Infertility, Male , Humans , Male , Animals , Mice , Semen , Flagella , Fertility , Calcium-Binding Proteins , Dyneins
6.
Nature ; 623(7986): 397-405, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914940

ABSTRACT

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Subject(s)
Brain , Cholesterol , Induced Pluripotent Stem Cells , Microglia , Neural Stem Cells , Neurogenesis , Organoids , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Microglia/cytology , Microglia/metabolism , Organoids/cytology , Organoids/metabolism , Cholesterol/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Axons , Cell Proliferation , Esters/metabolism , Lipid Droplets/metabolism
7.
Elife ; 122023 07 26.
Article in English | MEDLINE | ID: mdl-37494277

ABSTRACT

Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.


Subject(s)
CD8-Positive T-Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Bronchi/pathology , Epithelial Cells/pathology , Inflammation/pathology
8.
Cell Rep ; 42(6): 112579, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37267103

ABSTRACT

In mammals, about 99% of mitochondrial proteins are synthesized in the cytosol as precursors that are subsequently imported into the organelle. The mitochondrial health and functions rely on an accurate quality control of these imported proteins. Here, we show that the E3 ubiquitin ligase F box/leucine-rich-repeat protein 6 (FBXL6) regulates the quality of cytosolically translated mitochondrial proteins. Indeed, we found that FBXL6 substrates are newly synthesized mitochondrial ribosomal proteins. This E3 binds to chaperones involved in the folding and trafficking of newly synthesized peptide and to ribosomal-associated quality control proteins. Deletion of these interacting partners is sufficient to hamper interactions between FBXL6 and its substrate. Furthermore, we show that cells lacking FBXL6 fail to degrade specifically mistranslated mitochondrial ribosomal proteins. Finally, showing the role of FBXL6-dependent mechanism, FBXL6-knockout (KO) cells display mitochondrial ribosomal protein aggregations, altered mitochondrial metabolism, and inhibited cell cycle in oxidative conditions.


Subject(s)
Ribosomal Proteins , Ubiquitin-Protein Ligases , Mammals/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Domains , Ribosomal Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Humans
9.
Proc Natl Acad Sci U S A ; 120(23): e2221742120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252964

ABSTRACT

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.


Subject(s)
Fibrillin-1 , Marfan Syndrome , Animals , Mice , Extracellular Matrix/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Marfan Syndrome/genetics , Marfan Syndrome/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
J Fungi (Basel) ; 9(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108947

ABSTRACT

Fungal secretomes are known to contain a multitude of components involved in nutrition, cell growth or biotic interactions. Recently, extra-cellular vesicles have been identified in a few fungal species. Here, we used a multidisciplinary approach to identify and characterize extracellular vesicles produced by the plant necrotroph Botrytis cinerea. Transmission electron microscopy of infectious hyphae and hyphae grown in vitro revealed extracellular vesicles of various sizes and densities. Electron tomography showed the co-existence of ovoid and tubular vesicles and pointed to their release via the fusion of multi-vesicular bodies with the cell plasma membrane. The isolation of these vesicles and exploration of their protein content using mass spectrometry led to the identification of soluble and membrane proteins involved in transport, metabolism, cell wall synthesis and remodeling, proteostasis, oxidoreduction and traffic. Confocal microscopy highlighted the capacity of fluorescently labeled vesicles to target cells of B. cinerea, cells of the fungus Fusarium graminearum, and onion epidermal cells but not yeast cells. In addition, a specific positive effect of these vesicles on the growth of B. cinerea was quantified. Altogether, this study broadens our view on the secretion capacity of B. cinerea and its cell-to-cell communication.

11.
J Fungi (Basel) ; 9(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36983501

ABSTRACT

Candida lusitaniae is an emerging opportunistic pathogenic yeast capable of shifting from yeast to pseudohyphae form, and it is one of the few Candida species with the ability to reproduce sexually. In this study, we showed that a dpp3Δ mutant, inactivated for a putative pyrophosphatase, is impaired in cell separation, pseudohyphal growth and mating. The defective phenotypes were not restored after the reconstruction of a wild-type DPP3 locus, reinforcing the hypothesis of the presence of an additional mutation that we suspected in our previous study. Genetic crosses and genome sequencing identified an additional mutation in MED15, encoding a subunit of the mediator complex that functions as a general transcriptional co-activator in Eukaryotes. We confirmed that inactivation of MED15 was responsible for the defective phenotypes by rescuing the dpp3Δ mutant with a wild-type copy of MED15 and constructing a med15Δ knockout mutant that mimics the phenotypes of dpp3Δ in vitro. Proteomic analyses revealed the biological processes under the control of Med15 and involved in hyphal growth, cell separation and mating. This is the first description of the functions of MED15 in the regulation of hyphal growth, cell separation and mating, and the pathways involved in C. lusitaniae.

12.
Front Cell Infect Microbiol ; 12: 1010038, 2022.
Article in English | MEDLINE | ID: mdl-36310866

ABSTRACT

The Toxoplasma gondii tachyzoite is a singled-cell obligate intracellular parasite responsible for the acute phase of toxoplasmosis. This polarized cell exhibits an apical complex, a hallmark of the phylum Apicomplexa, essential for motility, invasion, and egress from the host cell. Located on the opposite end of the cell is the basal complex, an elaborated cytoskeletal structure that also plays critical roles in the lytic cycle of the parasite, being involved in motility, cell division, constriction and cytokinesis, as well as intravacuolar cell-cell communication. Nevertheless, only a few proteins of this structure have been described and functionally assessed. In this study, we used spatial proteomics to identify new basal complex components (BCC), and in situ imaging, including ultrastructure expansion microscopy, to position them. We thus confirmed the localization of nine BCCs out of the 12 selected candidates and assigned them to different sub-compartments of the basal complex, including two new domains located above the basal ring and below the posterior cup. Their functional investigation revealed that none of these BCCs are essential for parasite growth in vitro. However, one BCC is critical for constricting of the basal complex, likely through direct interaction with the class VI myosin heavy chain J (MyoJ), and for gliding motility. Four other BCCs, including a phosphatase and a guanylate-binding protein, are involved in the formation and/or maintenance of the intravacuolar parasite connection, which is required for the rosette organization and synchronicity of cell division.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Toxoplasma/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasmosis/parasitology , Cytoskeleton/metabolism , Cell Division
13.
Nat Commun ; 13(1): 5445, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114198

ABSTRACT

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Tsetse Flies , Adenylyl Cyclases/metabolism , Animals , Cyclic AMP , Trypanosoma brucei brucei/metabolism , Tsetse Flies/parasitology
14.
J Fungi (Basel) ; 8(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36135623

ABSTRACT

The fungal cell wall occupies a central place in the interaction between fungi and their environment. This study focuses on the role of the putative polysaccharide synthase Cps1 in the physiology, development and virulence of the grey mold-causing agent Botrytis cinerea. Deletion of the Bccps1 gene does not affect the germination of the conidia (asexual spores) or the early mycelial development, but it perturbs hyphal expansion after 24 h, revealing a two-phase hyphal development that has not been reported so far. It causes a severe reduction of mycelial growth in a solid medium and modifies hyphal aggregation into pellets in liquid cultures. It strongly impairs plant penetration, plant colonization and the formation of sclerotia (survival structures). Loss of the BcCps1 protein associates with a decrease in glucans and glycoproteins in the fungus cell wall and the up-accumulation of 132 proteins in the mutant's exoproteome, among which are fungal cell wall enzymes. This is accompanied by an increased fragility of the mutant mycelium, an increased sensitivity to some environmental stresses and a reduced adhesion to plant surface. Taken together, the results support a significant role of Cps1 in the cell wall biology of B. cinerea.

15.
Cell Rep ; 38(13): 110571, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354045

ABSTRACT

Rhinovirus (RV) infection of the bronchial epithelium is implicated in the vast majority of severe asthma exacerbations. Interestingly, the susceptibility of bronchial epithelium to RV infection is increased in persons with asthma. Bronchial smooth muscle (BSM) remodeling is an important feature of severe asthma pathophysiology, and its reduction using bronchial thermoplasty has been associated with a significant decrease in the exacerbation rate. We hypothesized that asthmatic BSM can play a role in RV infection of the bronchial epithelium. Using an original co-culture model between bronchial epithelium and BSM cells, we show that asthmatic BSM cells increase RV replication in bronchial epithelium following RV infection. These findings are related to the increased production of CCL20 by asthmatic BSM cells. Moreover, we demonstrate an original downregulation of the activity of the epithelial protein kinase RNA-activated (PKR) antiviral pathway. Finally, we identify a direct bottom-up effect of asthmatic BSM cells on bronchial epithelium susceptibility to RV infection.


Subject(s)
Asthma , Rhinovirus , Asthma/metabolism , Bronchi , Epithelium/metabolism , Humans , Muscle, Smooth/metabolism
16.
Biomedicines ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35327371

ABSTRACT

Antibody-mediated rejection (ABMR) is the leading cause of allograft failure in kidney transplantation. Its histological hallmark is represented by lesions of glomerulitis i.e., inflammatory cells within glomeruli. Current therapies for ABMR fail to prevent chronic allograft damage i.e., transplant glomerulopathy, leading to allograft loss. We used laser microdissection of glomeruli from formalin-fixed allograft biopsies combined with mass spectrometry-based proteomics to describe the proteome modification of 11 active and 10 chronic active ABMR cases compared to 8 stable graft controls. Of 1335 detected proteins, 77 were deregulated in glomerulitis compared to stable grafts, particularly involved in cellular stress mediated by interferons type I and II, leukocyte activation and microcirculation remodeling. Three proteins extracted from this protein profile, TYMP, WARS1 and GBP1, showed a consistent overexpression by immunohistochemistry in glomerular endothelial cells that may represent relevant markers of endothelial stress during active ABMR. In transplant glomerulopathy, 137 proteins were deregulated, which favor a complement-mediated mechanism, wound healing processes through coagulation activation and ultimately a remodeling of the glomerular extracellular matrix, as observed by light microscopy. This study brings novel information on glomerular proteomics of ABMR in kidney transplantation, and highlights potential targets of diagnostic and therapeutic interest.

17.
Oncogene ; 41(18): 2571-2586, 2022 04.
Article in English | MEDLINE | ID: mdl-35322197

ABSTRACT

Combined therapy with anti-BRAF plus anti-MEK is currently used as first-line treatment of patients with metastatic melanomas harboring the somatic BRAF V600E mutation. However, the main issue with targeted therapy is the acquisition of tumor cell resistance. In a majority of resistant melanoma cells, the resistant process consists in epithelial-to-mesenchymal transition (EMT). This process called phenotype switching makes melanoma cells more invasive. Its signature is characterized by MITF low, AXL high, and actin cytoskeleton reorganization through RhoA activation. In parallel of this phenotype switching phase, the resistant cells exhibit an anarchic cell proliferation due to hyper-activation of the MAP kinase pathway. We show that a majority of human melanoma overexpress discoidin domain receptor 2 (DDR2) after treatment. The same result was found in resistant cell lines presenting phenotype switching compared to the corresponding sensitive cell lines. We demonstrate that DDR2 inhibition induces a decrease in AXL expression and reduces stress fiber formation in resistant melanoma cell lines. In this phenotype switching context, we report that DDR2 control cell and tumor proliferation through the MAP kinase pathway in resistant cells in vitro and in vivo. Therefore, inhibition of DDR2 could be a new and promising strategy for countering this resistance mechanism.


Subject(s)
Discoidin Domain Receptor 2 , Melanoma , Cell Line, Tumor , Cell Proliferation/genetics , Discoidin Domain Receptor 2/genetics , Drug Resistance, Neoplasm/genetics , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Phenotype , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf
18.
Neurooncol Adv ; 4(1): vdac018, 2022.
Article in English | MEDLINE | ID: mdl-35300150

ABSTRACT

Background: Diffuse Midline Glioma, H3K27M-mutant (DMG) is a rare, highly aggressive pediatric tumor affecting the brainstem, and is one of the deadliest cancers. Currently available treatment options such as chemotherapy and radiotherapy do only modestly prolong survival. In this pathology, H3K27 mutations deregulate Polycomb Repressive Complex 2 (PRC2), including enzymatic activity of EZH2, which is therefore under investigation as a therapeutic target. Methods: We used a chemical EZH2 inhibitor, GSK126, small interfering RNAs, and a CRISPR/Cas9 knockout approaches in a series of DMG tumor cell lines to investigate metabolic treatment responses by proteomic analysis. A combination strategy was elaborated and studied in primary and established DMG cells, spheroid 3D cultures, and in vivo in a chick chorio-allantoic membrane DMG assay and an orthotopic intracranial DMG mouse model. Results: GSK126 shows significant (P < .05-.001) inhibitory effects in in vitro cell proliferation assays and induces apoptosis. Chemical targeting of EZH2 induced expression of proteins implicated in cholesterol metabolism. Low-dose GSK126 treatment together with statins revealed strong growth inhibition in combinatorial treatments, but not in single treatments, both in DMG cells in vitro, in DMG spheroid cultures, and in chick and mouse in vivo models (P < .05). All statistical tests were two-sided. Conclusions: Our results reveal an unexpected GSK126-inducible sensitivity to cholesterol biosynthesis inhibitors in highly aggressive pediatric glioma that warrants further evaluation as treatment strategy. This combinatorial therapy should have few side effects because of the low doses used to achieve significant anti-tumor activity.

19.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943872

ABSTRACT

Calcium ions (Ca2+) play important and diverse roles in the regulation of autophagy, cell death and differentiation. Here, we investigated the impact of Ca2+ in regulating acute promyelocytic leukemia (APL) cell fate in response to the anti-cancer agent all-trans retinoic acid (ATRA). We observed that ATRA promotes calcium entry through store-operated calcium (SOC) channels into acute promyelocytic leukemia (APL) cells. This response is associated with changes in the expression profiles of ORAI1 and STIM1, two proteins involved in SOC channels activation, as well as with a significant upregulation of several key proteins associated to calcium signaling. Moreover, ATRA treatment of APL cells led to a significant activation of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and its downstream effector AMP-activated protein kinase (AMPK), linking Ca2+ signaling to autophagy. Pharmacological inhibition of SOC channels and CAMKK2 enhanced ATRA-induced cell differentiation and death. Altogether, our results unravel an ATRA-elicited signaling pathway that involves SOC channels/CAMKK2 activation, induction of autophagy, inhibition of cellular differentiation and suppression of cell death. We suggest that SOC channels and CAMKK2 may constitute novel drug targets for potentiating the anti-cancer effect of ATRA in APL patients.


Subject(s)
Calcium Channels/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Tretinoin/therapeutic use , Adenylate Kinase/metabolism , Autophagy/drug effects , Calcium/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Enzyme Activation/drug effects , Granulocytes/drug effects , Granulocytes/metabolism , Granulocytes/pathology , Humans , Tretinoin/pharmacology , Up-Regulation/drug effects
20.
Biomedicines ; 9(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34680548

ABSTRACT

BACKGROUND: LRP-1 is a multifunctional scavenger receptor belonging to the LDLR family. Due to its capacity to control pericellular levels of various growth factors and proteases, LRP-1 plays a crucial role in membrane proteome dynamics, which appears decisive for tumor progression. METHODS: LRP-1 involvement in a TNBC model was assessed using an RNA interference strategy in MDA-MB-231 cells. In vivo, tumorigenic and angiogenic effects of LRP-1-repressed cells were evaluated using an orthotopic xenograft model and two angiogenic assays (Matrigel® plugs, CAM). DCE-MRI, FMT, and IHC were used to complete a tumor longitudinal follow-up and obtain morphological and functional vascular information. In vitro, HUVECs' angiogenic potential was evaluated using a tumor secretome, subjected to a proteomic analysis to highlight LRP-1-dependant signaling pathways. RESULTS: LRP-1 repression in MDA-MB-231 tumors led to a 60% growth delay because of, inter alia, morphological and functional vascular differences, confirmed by angiogenic models. In vitro, the LRP-1-repressed cells secretome restrained HUVECs' angiogenic capabilities. A proteomics analysis revealed that LRP-1 supports tumor growth and angiogenesis by regulating TGF-ß signaling and plasminogen/plasmin system. CONCLUSIONS: LRP-1, by its wide spectrum of interactions, emerges as an important matricellular player in the control of cancer-signaling events such as angiogenesis, by supporting tumor vascular morphology and functionality.

SELECTION OF CITATIONS
SEARCH DETAIL
...