Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 243: 123378, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35303553

ABSTRACT

In this work, a low toxicity deep eutectic solvent-based ferrofluid is presented for the first time as magnetic fluid to be used as an efficient solvent in liquid-based microextraction techniques. This ferrofluid is made of a hydrophobic deep eutectic solvent, composed by menthol and thymol in a 1:5 molar ratio as carrier solvent, and oleic acid-coated cobalt ferrite (CoFe2O4@oleic acid) magnetic nanoparticles. This material was characterized via magnetism measurement, scanning electron microscopy, infrared spectroscopy and density measurement. The determination of UV filters in environmental water samples was selected as model analytical application to test the extraction performance of this new ferrofluid by employing stir bar dispersive liquid microextraction, prior to liquid chromatography-tandem mass spectrometry analysis. The response surface methodology was used as a multivariate optimization method for extraction step. Under the optimized conditions, good analytical features were obtained, such as low limits of detection between 7 and 83 ng L-1, good repeatability (relative standard deviations, RSD (%) below 15%), enrichment factors between 46 and 101 and relative recoveries between 80 and 117%, proving the good extraction capability of this ferrofluid. Finally, the method was successfully applied to three environmental waters (beach and river waters), finding trace amounts of the target UV filters. The presented low toxicity deep eutectic solvent-based ferrofluid results to be a good alternative to conventional solvents used in liquid-phase microextraction techniques.


Subject(s)
Deep Eutectic Solvents , Liquid Phase Microextraction , Colloids , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Liquid Phase Microextraction/methods , Solvents/chemistry
2.
Pharmaceutics ; 13(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205280

ABSTRACT

Three-dimensional printed drug development is nowadays an active area in the pharmaceutical industry, where the search for an appropriate edible carrier that permits the thermal processing of the mixture at temperature levels that are safe for the drug is an important field of study. Here, potato starch and hydroxypropyl cellulose based mixtures loaded with paracetamol up to 50% in weight were processed by hot melt extrusion at 85 °C to test their suitability to be thermally processed. The extruded mixtures were tested by liquid chromatography to analyze their release curves and were thermally characterized. The drug recovery was observed to be highly dependent on the initial moisture level of the mixture, the samples being prepared with an addition of water at a ratio of 3% in weight proportional to the starch amount, highly soluble and easy to extrude. The release curves showed a slow and steady drug liberation compared to a commercially available paracetamol tablet, reaching the 100% of recovery at 60 min. The samples aged for 6 weeks showed slower drug release curves compared to fresh samples, this effect being attributable to the loss of moisture. The paracetamol loaded mixture in powder form was used to print pills with different sizes and geometries in a fused deposition modelling three-dimensional printer modified with a commercially available powder extrusion head, showing the potential of this formulation for use in personalized medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...