Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 12(4)2020 04 20.
Article in English | MEDLINE | ID: mdl-32325926

ABSTRACT

The feline leukemia virus (FeLV) belongs to the family Retroviridae; it is the first feline retrovirus discovered and one of the agents that has a great impact on cats' health and the ecology of the feline population worldwide. It is associated with the occurrence of several syndromes of fatal diseases, including the development of lymphomas. Studies on FeLV have been reported in Colombia, and most of them have been approached from a clinical point of view. However, only a few studies have focused on the prevalence of the infection, while none have clarified which variant or FeLV viral subgroup is presently circulating in our country. Therefore, the present study investigated the prevalence of the infection associated with the molecular characterization of FeLV present in cats in Aburrá Valley, Colombia. The sampling of privately owned and shelter cats was performed in female (n = 54) and male (n = 46) felines; most of them were seemingly healthy according to the owner's report, with nonspecific clinical history. Immunoassay confirmed that 59.44% (95% confidence interval (CI) = 49.81-69.06%) of felines were FeLV seropositive. The molecular testing of felines using reverse transcription-polymerase chain reaction and sequencing showed that 30% (30/100) of felines were positive, and the most prevalent subgroup in the Aburrá Valley was FeLV-A. In conclusion, the frequency of leukemia virus, as revealed by molecular and serological tests, is one of the highest reported frequencies to date, and a high molecular variation is shown in the Colombian population. More studies on the behaviour of the virus in feline populations in Columbia are warranted to determine its prevalence throughout the country.


Subject(s)
Genome, Viral , Genomics , Leukemia Virus, Feline/genetics , Leukemia, Feline/epidemiology , Leukemia, Feline/virology , Animals , Cats , Colombia/epidemiology , Cross-Sectional Studies , Female , Genetic Variation , Genomics/methods , Geography, Medical , Leukemia Virus, Feline/classification , Leukemia, Feline/diagnosis , Male , Phylogeny , Polymerase Chain Reaction , Prevalence
2.
Sci Rep ; 9(1): 15747, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673120

ABSTRACT

Canine distemper virus (CDV) is the cause of a multisystem disease in domestic dogs and wild animals, infecting more than 20 carnivore and non-carnivore families and even infecting human cell lines in in vitro conditions. Phylogenetic classification based on the hemagglutinin gene shows 17 lineages with a phylogeographic distribution pattern. In Medellín (Colombia), the lineage South America-3 is considered endemic. Phylogenetic studies conducted in Ecuador using fragment coding for the fusion protein signal peptide (Fsp) characterized a new strain belonging to a different lineage. For understanding the distribution of the South America-3 lineage in the north of the South American continent, we characterized CDV from three Colombian cities (Medellín, Bucaramanga, and Bogotá). Using phylogenetic analysis of the hemagglutinin gene and the Fsp region, we confirmed the circulation of CDV South America-3 in different areas of Colombia. We also described, for the first time to our knowledge, the circulation of a new lineage in Medellín that presents a group monophyletic with strains previously characterized in dogs in Ecuador and in wildlife and domestic dogs in the United States, for which we propose the name "South America/North America-4" due its intercontinental distribution. In conclusion, our results indicated that there are at least four different CDV lineages circulating in domestic dogs in South America: the Europe/South America-1 lineage circulating in Brazil, Uruguay, and Argentina; the South America-2 lineage restricted to Argentina; the South America-3 lineage, which has only been reported in Colombia; and lastly an intercontinental lineage present in Colombia, Ecuador, and the United States, referred to here as the "South America/North America-4" lineage.


Subject(s)
Distemper Virus, Canine/genetics , Genetic Linkage , Animals , Bayes Theorem , Distemper Virus, Canine/classification , Dogs , Female , Glycopeptides/classification , Glycopeptides/genetics , Hemagglutinins, Viral/classification , Hemagglutinins, Viral/genetics , Male , North America , Phylogeny , Phylogeography , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA , South America
3.
Viruses ; 11(7)2019 06 26.
Article in English | MEDLINE | ID: mdl-31247987

ABSTRACT

Canine distemper virus (CDV) is a worldwide distributed virus which belongs to the genus Morbillivirus within the Paramyxoviridae family. CDV spreads through the lymphatic, epithelial, and nervous systems of domestic dogs and wildlife, in at least six orders and over 20 families of mammals. Due to the high morbidity and mortality rates and broad host range, understanding the epidemiology of CDV is not only important for its control in domestic animals, but also for the development of reliable wildlife conservation strategies. The present review aims to give an outlook of the multiple evolutionary landscapes and factors involved in the transmission of CDV by including epidemiological data from multiple species in urban, wild and peri-urban settings, not only in domestic animal populations but at the wildlife interface. It is clear that different epidemiological scenarios can lead to the presence of CDV in wildlife even in the absence of infection in domestic populations, highlighting the role of CDV in different domestic or wild species without clinical signs of disease mainly acting as reservoirs (peridomestic and mesocarnivores) that are often found in peridomestic habits triggering CDV epidemics. Another scenario is driven by mutations, which generate genetic variation on which random drift and natural selection can act, shaping the genetic structure of CDV populations leading to some fitness compensations between hosts and driving the evolution of specialist and generalist traits in CDV populations. In this scenario, the highly variable protein hemagglutinin (H) determines the cellular and host tropism by binding to signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors of the host; however, the multiple evolutionary events that may have facilitated CDV adaptation to different hosts must be evaluated by complete genome sequencing. This review is focused on the study of CDV interspecies transmission by examining molecular and epidemiological reports based on sequences of the hemagglutinin gene and the growing body of studies of the complete genome; emphasizing the importance of long-term multidisciplinary research that tracks CDV in the presence or absence of clinical signs in wild species, and helping to implement strategies to mitigate the infection. Integrated research incorporating the experience of wildlife managers, behavioral and conservation biologists, veterinarians, virologists, and immunologists (among other scientific areas) and the inclusion of several wild and domestic species is essential for understanding the intricate epidemiological dynamics of CDV in its multiple host infections.


Subject(s)
Distemper Virus, Canine/genetics , Distemper/virology , Evolution, Molecular , Host Specificity , Animals , Animals, Wild/virology , Distemper/transmission , Distemper Virus, Canine/classification , Distemper Virus, Canine/isolation & purification , Distemper Virus, Canine/physiology , Dogs , Phylogeny
4.
Pathogens ; 9(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892101

ABSTRACT

Canine distemper virus (CDV) is considered a reemerging disease-causing agent in domestic dogs because it presents high divergence among circulating strains worldwide. In Colombia, the South America-3 and South America/North America-4 lineages co-circulate in domestic dogs, both in the Medellin metropolitan area. In this paper, two full CDV genomes from each viral lineage circulating in Medellin were sequenced; we explored the phylogenetic relationship with the available genome sequences; we described the presence of CDV mutations in the South America-3 and South America/North America-4 lineages associated with adaptation to human cells and a crossing of the species barrier and pathogenicity; and we established the evolutionary rates and time of the closest common ancestor for each gene and characterized the presentation of multiple genomic sites by positive selection.

SELECTION OF CITATIONS
SEARCH DETAIL
...