Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(3): 033001, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35119904

ABSTRACT

We investigate glycine microsolvation with water molecules, mimicking astrophysical conditions, in our laboratory by embedding these clusters in helium nanodroplets at 0.37 K. We recorded mass selective infrared spectra in the frequency range 1500-1800 cm^{-1} where two bands centered at 1630 and 1724 cm^{-1} were observed. By comparison with the extensive accompanying calculations, the band at 1630 cm^{-1} was assigned to the COO^{-} asymmetric stretching mode of the zwitter ion and the band at 1724 cm^{-1} was assigned to redshifted C=O stretch within neutral clusters. We show that zwitter ion formation of amino acids readily occurs with only few water molecules available even under extreme conditions.

2.
ACS Omega ; 6(19): 12676-12683, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34056419

ABSTRACT

Charge separation under solvation stress conditions is a fundamental process that comes in many forms in doped water clusters. Yet, the mechanism of intramolecular charge separation, where constraints due to the molecular structure might be intricately tied to restricted solvation structures, remains largely unexplored. Microhydrated amino acids are such paradigmatic molecules. Ab initio simulations are carried out at 300 K in the frameworks of metadynamics sampling and thermodynamic integration to map the thermal mechanisms of zwitterionization using Gly(H2O) n with n = 4 and 10. In both cases, a similar water-mediated proton transfer chain mechanism is observed; yet, detailed analyses of thermodynamics and kinetics demonstrate that the charge-separated zwitterion is the preferred species only for n = 10 mainly due to kinetic stabilization. Structural analyses disclose that bifurcated H-bonded water bridges, connecting the cationic and anionic sites in the fluctuating microhydration network at room temperature, are enhanced in the transition-state ensemble exclusively for n = 10 and become overwhelmingly abundant in the stable zwitterion. The findings offer potential insights into charge separation under solvation stress conditions beyond the present example.

SELECTION OF CITATIONS
SEARCH DETAIL
...