Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1050, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200048

ABSTRACT

Concern over the possibility of deliberate dispersion of chemical warfare agents and highly toxic pharmaceutical based agents as persistent aerosols has raised the need for experimental assessment of current and future defensive capabilities of armed forces and law enforcement agencies. Therefor we herewith present the design, realization and validation of the Chemical Hot Aerosol Research Tool (CHART) as a validated and safe experimental set-up for performance evaluation of chemical detection and identification equipment against chemical warfare agents and other highly toxic compounds. In the CHART liquid and solid compounds in solution or suspension are being dispersed as aerosols in a nebulization chamber. A broad dynamic particle size range can be generated, including particles known to be able to reach the lower respiratory tract. The aerosol generated is presented to the detection system-under-test while being monitored and characterized in real-time, using an optical particle counter and a time-of-flight aerosol analyzer, respectively. Additionally, the chemical composition of the aerosol is ex situ measured by analytical chemical methods. Evidently, in the design of the CHART significant emphasis was placed on laboratory safety and containment of toxic chemicals. The CHART presented in this paper has proven to be an indispensable experimental tool to study detectors and fieldable identification equipment against toxic chemical aerosols.

2.
Dalton Trans ; 46(23): 7506-7514, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28561854

ABSTRACT

Two new heterodinuclear nickel-iron complexes [Ni(pbSmSe)FeCpCO]PF6 and [Ni(xbSmSe)FeCpCO]PF6 were synthesized as mimics of the [NiFeSe] hydrogenase active site (HCp = cyclopentadiene; H2pbSmSe = 1,9-diselenol-3,7-dithia-2,2,8,8-tetramethylnonane; H2xbSmSe = 1,2,-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene). The compounds were characterized by single crystal X-ray diffraction and cyclic voltammetry. X-ray structure determinations showed that in both NiFe complexes the nickel(ii) center is in a square-planar S2Se2 environment; the two selenolate donors are bridging to the iron(ii) center that is further coordinated to an η5-cyclopentadienyl group and a carbon monoxide ligand. Electrochemical studies showed that the complex [Ni(pbSmSe)FeCpCO]PF6 is an electrocatalyst for the production of H2 in DMF in the presence of acetic acid at -2.1 V vs. Fc+/Fc; a foot-of-the-wave (FOWA) analysis of the catalytic currents yielded an estimation of kobs of 24 s-1.


Subject(s)
Biomimetic Materials/chemistry , Coordination Complexes/chemistry , Hydrogenase/chemistry , Iron/chemistry , Models, Molecular , Nickel/chemistry , Protons , Biomimetic Materials/chemical synthesis , Catalysis , Catalytic Domain , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Electrochemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...