Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(5): 3448-3459, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802644

ABSTRACT

Pt(II)-BODIPY complexes combine the chemotherapeutic activity of Pt(II) with the photocytotoxicity of BODIPYs. Additional conjugation with targeting ligands can boost the uptake by cancer cells that overexpress the corresponding receptors. We describe two Pt(II) triangles, 1 and 2, built with pyridyl BODIPYs functionalized with glucose (3) or triethylene glycol methyl ether (4), respectively. Both 1 and 2 showed higher singlet oxygen quantum yields than 3 and 4, due to the enhanced singlet-to-triplet intersystem crossing. To evaluate the targeting effect of the glycosylated derivative, in vitro experiments were performed using glucose transporter 1 (GLUT1)-positive HT29 and A549 cancer cells, and noncancerous HEK293 cells as control. Both 1 and 2 showed higher cellular uptake than 3 and 4. Specifically, 1 was selective and highly cytotoxic toward HT29 and A549 cells. The synergistic chemo- and photodynamic behavior of the metallacycles was also confirmed. Notably, 1 exhibited superior efficacy toward the cisplatin-resistant R-HepG2 cells.


Subject(s)
Antineoplastic Agents , Photochemotherapy , Humans , Antineoplastic Agents/pharmacology , HEK293 Cells , Photosensitizing Agents/pharmacology
2.
Chem Commun (Camb) ; 59(14): 1951-1954, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36722871

ABSTRACT

Sequential azide/diyne cycloadditions proved highly effective for the macrocyclization of a bis-azido aza-dipyrrin. Macrocyclic aza-dipyrrin could be produced in 30 min at rt in water with changes in fluorescence intensity and lifetimes measurable upon reaction. Live cell microscopy showed that aza-dipyrrins were suitable for confocal and STED super-resolution imaging and a bioorthogonal response to macrocyclization could be detected in cellular compartments. These results will encourage a broader examination of the sensing and imaging uses of aza-dipyrrins.


Subject(s)
Diynes , Microscopy, Fluorescence
3.
Angew Chem Int Ed Engl ; 62(5): e202214543, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36350769

ABSTRACT

Large π-conjugated systems are key in the area of molecular materials. Herein, we prepare via AuI -catalyzed cyclization a series of fully π-conjugated anthracene-fused oligo-BODIPYs. Their structural and optoelectronic properties were studied by several techniques, ranging from X-ray, UV/Vis, and cyclic voltammetry to transient absorption spectroscopy. As a complement, their electronic structures were explored by means of Density Functional Theory (DFT) calculations. Depending on the size and shape of the π-conjugated skeleton, unique features-such as face-to-face supramolecular organization, NIR absorption and fluorescence as well as strong electron accepting character-were noted. All in all, the aforementioned features render them valuable for technological applications.

4.
Chem Sci ; 11(39): 10778-10785, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-34094331

ABSTRACT

Here we report gold(i)-catalyzed cycloisomerization as a new powerful synthetic tool for the preparation of π-extended BODIPY derivatives. The catalytic system PPhF 3AuCl/AgSbF6 enables the synthesis of [b]-[2,1]naphtho-fused-BODIPYs (2a-2c) under mild conditions, in excellent yields and short reaction times. The reaction is totally regioselective to the 6-endo-dig product and for the α-position of the BODIPY, which is both the kinetically and thermodynamically favored pathway, as supported by the free energy profile calculated by means of Density Functional Theory (DFT). Moreover, this methodology also allows the synthesis of two new families of [b]-aryl-fused-BODIPYs, namely, [3,4]phenanthro- (2e and 2f) and [1,2]naphtho-fused (2g) BODIPYs. Their molecular and electronic structures were established by NMR and UV-vis spectroscopies as well as single-crystal X-ray diffraction analysis. As can be noted from the X-ray structures, 2a, 2e and 2g present interesting structural differences at both the molecular and packing level. Interestingly, despite being isomers, the UV/vis spectra of 2a and 2g revealed significant differences in their electronic structures. The origin of this finding was studied by Time-Dependent DFT calculations. Calculated DFT Nuclear Independent Chemical Shift (NICS(0)) values also supported the different electronic structures of 2a and 2g.

5.
J Org Chem ; 81(9): 3700-10, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27055068

ABSTRACT

The generality of the palladium-catalyzed C-C coupling Negishi reaction when applied to haloBODIPYs is demonstrated on the basis of selected starting BODIPYs, including polyhalogenated and/or asymmetrical systems, and organozinc reagents. This reaction is an interesting synthetic tool in BODIPY chemistry, mainly because it allows a valuable regioselective postfunctionalization of BODIPY chromophores with different functional groups. In this way, functional patterns that are difficult to obtain by other procedures (e.g., asymmetrically functionalized BODIPYs involving halogenated positions) can now be made. The regioselectivity is achieved by controlling the reaction conditions and is based on almost-general reactivity preferences, and the nature of the involved halogens and their positions. This ability is exemplified by the preparation of a series of new BODIPY dyes with unprecedented substitution patterns allowing noticeable lasing properties.

6.
Chem Commun (Camb) ; 51(57): 11382-5, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26084606

ABSTRACT

A rational design of an unprecedented asymmetric cassette triad based entirely on BODIPY chromophores allows efficient light harvesting over the UV-vis spectral region, leading to a bright and stable red-edge laser emission via efficient energy-transfer processes.

7.
Chemistry ; 20(9): 2646-53, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24453119

ABSTRACT

A new library of E- and C-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives has been synthesized through a straightforward protocol from commercially available BODIPY complexes, and a systematic study of the photophysical properties and laser behavior related to the electronic properties of the B-substituent group (alkynyl, cyano, vinyl, aryl, and alkyl) has been carried out. The replacement of fluorine atoms by electron-withdrawing groups enhances the fluorescence response of the dye, whereas electron-donor groups diminish the fluorescence efficiency. As a consequence, these compounds exhibit enhanced laser action with respect to their parent dyes, both in liquid solution and in the solid phase, with lasing efficiencies under transversal pumping up to 73 % in liquid solution and 53 % in a solid matrix. The new dyes also showed enhanced photostability. In a solid matrix, the derivative of commercial dye PM597 that incorporated cyano groups at the boron center exhibited a very high lasing stability, with the laser emission remaining at the initial level after 100 000 pump pulses in the same position of the sample at a 10 Hz repetition rate. Distributed feedback laser emission was demonstrated with organic films that incorporated parent dye PM597 and its cyano derivative. The films were deposited onto quartz substrates engraved with appropriate periodical structures. The C derivative exhibited a laser threshold lower than that of the parent dye as well as lasing intensities up to three orders of magnitude higher.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Nitriles/chemistry , Porphobilinogen/analogs & derivatives , Lasers, Dye , Molecular Structure , Porphobilinogen/chemistry , Spectrometry, Fluorescence
8.
Org Lett ; 11(18): 4148-51, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19685921

ABSTRACT

Previous studies have led to the conclusion that a large majority of acyclic 1,4-dienes do not undergo photochemical di-pi-methane (DPM) rearrangement under triplet-sensitized irradiation. The results of a detailed analysis of these processes demonstrate that a series of these compounds do indeed undergo highly efficient DPM rearrangement from their triplet excited states when suitable triplet sensitizers are used.

SELECTION OF CITATIONS
SEARCH DETAIL
...