Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39002661

ABSTRACT

OBJECTIVES: We propose fast and accurate molecular detection of the Y132F ERG11p substitution directly on pure-cultured C. parapsilosis isolates. We also assessed a discriminative genotyping scheme to track circulating genotypes. METHODS: A total of 223 C. parapsilosis isolates (one patient each) from 20 hospitals, located in Spain and Italy were selected. Isolates were fluconazole-resistant (n=94; harbouring the Y132F ERG11p substitution [n=85], the G458S substitution [n=6], the R398I substitution [n=2], or the wild-type ERG11 gene sequence) or fluconazole-susceptible (n=129). Two targeted-A395T-mutation PCR formats (conventional and real-time) were engineered and optimized on fluconazole-susceptible and fluconazole-resistant pure-cultured isolates, thus skipping DNA extraction. Two genotyping schemes were compared: Scheme 1 (CP1, CP4a, CP6, and B markers), and Scheme 2 (6A, 6B, 6C, CP1, CP4a, and CP6 markers). RESULTS: The screening performed using both PCR formats showed 100% specificity (fluconazole-susceptible isolates; n=129/129) and sensitivity (Y132F isolates; n=85/85) values, however, results were available in 3 and 1.5 hours with the conventional and real-time PCR formats, respectively. Overall, Scheme 1 showed higher genetic diversity than Scheme 2, as shown by the number of alleles detected (n=98; mean 23, range 13-38), the significantly higher observed and expected heterozygosity, and the probability of identity index (2.5x10-6). Scheme 2 markers did not provide further genotypic discrimination of Y132F fluconazole-resistant genotypes. CONCLUSION: Both proposed PCR formats allow to speed up the accurate detection of substitution Y132F ERG11p in C. parapsilosis isolates with 100% specificity and sensitivity. In addition, we recommend CP1, CP4a, CP6, and B microsatellite markers for genotyping fluconazole-resistant isolates.

2.
Mycoses ; 67(3): e13706, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38438313

ABSTRACT

BACKGROUND: Fluconazole-resistant Candida parapsilosis is a matter of concern. OBJECTIVES: To describe fluconazole-resistant C. parapsilosis genotypes circulating across hospitals in Spain and Rome and to study their azole-resistance profile associated with ERG11p substitutions. PATIENTS/METHODS: We selected fluconazole-resistant C. parapsilosis isolates (n = 528 from 2019 to 2023; MIC ≥8 mg/L according to EUCAST) from patients admitted to 13 hospitals located in five Spanish cities and Rome. Additionally, we tested voriconazole, posaconazole, isavuconazole, amphotericin B, micafungin, anidulafungin and ibrexafungerp susceptibility. RESULTS: Of the 53 genotypes found, 49 harboured the Y132F substitution, five of which were dominating city-specific genotypes involving almost half the isolates. Another genotype involved isolates harbouring the G458S substitution. Finally, we found two genotypes with the wild-type ERG11 gene sequence and one with the R398I substitution. All isolates were fully susceptible/wild-type to amphotericin B, anidulafungin, micafungin and ibrexafungerp. The azole-resistance patterns found were: voriconazole-resistant (74.1%) or voriconazole-intermediate (25.2%), posaconazole-resistant (10%) and isavuconazole non-wild-type (47.5%). Fluconazole-resistant and voriconazole non-wild-type isolates were likely to harbour substitution Y132F if posaconazole was wild type; however, if posaconazole was non-wild type, substitution G458S was indicated if isavuconazole MIC was >0.125 mg/L or substitution Y132F if isavuconazole MIC was ≤0.125 mg/L. CONCLUSIONS: We detected a recent clonal spread of fluconazole-resistant C. parapsilosis across some cities in Spain, mostly driven by dominating city-specific genotypes, which involved a large number of isolates harbouring the Y132F ERG11p substitution. Isolates harbouring substitution Y132F can be suspected because they are non-susceptible to voriconazole and rarely posaconazole-resistant.


Subject(s)
Azoles , Fluconazole , Glycosides , Nitriles , Pyridines , Triazoles , Triterpenes , Humans , Azoles/pharmacology , Fluconazole/pharmacology , Candida parapsilosis/genetics , Cities , Voriconazole/pharmacology , Amphotericin B , Anidulafungin , Micafungin , Italy , Hospitals , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...