Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397470

ABSTRACT

Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as ß-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.


Subject(s)
Saccharum , Humans , Saccharum/metabolism , Caco-2 Cells , Antihypertensive Agents/pharmacology , alpha-Glucosidases/metabolism , Spectroscopy, Fourier Transform Infrared , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Sugars , Lipids , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
Appl Microbiol Biotechnol ; 108(1): 73, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38194142

ABSTRACT

Vulvovaginal candidiasis (VVC) affects approximately 30-50% of women at least once during their lifetime, causing uncomfortable symptoms and limitations in their daily quality of life. Antifungal therapy is not very effective, does not prevent recurrencies and usually causes side effects. Therefore, alternative therapies are urgently needed. The goal of this work was to investigate the potential benefits of using mannan oligosaccharides (MOS) extracts together with a Lactobacillus sp. pool, composed by the most significant species present in the vaginal environment, to prevent infections by Candida albicans. Microbial growth of isolated strains of the main vaginal lactobacilli and Candida strains was assessed in the presence of MOS, to screen their impact upon growth. A pool of the lactobacilli was then tested against C. albicans in competition and prophylaxis studies; bacterial and yeast cell numbers were quantified in specific time points, and the above-mentioned studies were assessed in simulated vaginal fluid (SVF). Finally, adhesion to vaginal epithelial cells (HeLa) was also evaluated, once again resorting to simultaneous exposure (competition) or prophylaxis assays, aiming to measure the effect of MOS presence in pathogen adherence. Results demonstrated that MOS extracts have potential to prevent vaginal candidiasis in synergy with vaginal lactobacilli, with improved results than those obtained when using lactobacilli alone. KEY POINTS: Potential benefits of MOS extracts with vaginal lactobacilli to prevent C. albicans infections. MOS impacts on growth of vaginal lactobacilli pool and C. albicans in SVF. MOS extracts in synergy with L. crispatus inhibit C. albicans adhesion in HeLa cells.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Female , Humans , Mannans , HeLa Cells , Quality of Life , Candidiasis, Vulvovaginal/prevention & control , Lactobacillus
3.
Pathogens ; 12(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37513732

ABSTRACT

Urinary tract infections (UTIs) are a common public health problem, mainly caused by uropathogenic Escherichia coli (UPEC). Patients with chronic UTIs are usually treated with long-acting prophylactic antibiotics, which promotes the development of antibiotic-resistant UPEC strains and may complicate their long-term management. D-mannose and extracts rich in D-mannose such as mannan oligosaccharides (MOS; D-mannose oligomers) are promising alternatives to antibiotic prophylaxis due to their ability to inhibit bacterial adhesion to urothelial cells and, therefore, infection. This highlights the therapeutic potential and commercial value of using them as health supplements. Studies on the effect of MOS in UTIs are, however, scarce. Aiming to evaluate the potential benefits of using MOS extracts in UTIs prophylaxis, their ability to inhibit the adhesion of UPEC to urothelial cells and its mechanism of action were assessed. Additionally, the expression levels of the pro-inflammatory marker interleukin 6 (IL-6) were also evaluated. After characterizing their cytotoxic profiles, the preliminary results indicated that MOS extracts have potential to be used for the handling of UTIs and demonstrated that the mechanism through which they inhibit bacterial adhesion is through the competitive inhibition of FimH adhesins through the action of mannose, validated by a bacterial growth impact assessment.

4.
J Sci Food Agric ; 103(15): 7529-7538, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37406160

ABSTRACT

BACKGROUND: Fresh-cut fruit are convenient ready-to-eat products increasingly demanded by consumers, but highly susceptible to oxidation. To increase the shelf life of these products, this industry is currently facing the challenge of finding sustainable natural preservatives capable of maintaining fresh-cut fruit quality while meeting consumers' expectations regarding health and environmental concerns. RESULTS: In this work, fresh-cut apple slices were treated with two antioxidant extracts derived from industrial by-products: a phenolic-rich extract produced from sugarcane straw (PE-SCS) and applied at 15 g L-1 , and a mannan-rich extract obtained from brewer's spent yeast (MN-BSY) applied at two concentrations: 1 and 5 g L-1 . PE-SCS, having a brown color, imparted a brownish hue to the fruit and increased the browning rate during storage, and not even the initial robust antioxidant response (high superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase activities), prevented oxidation. Fruit treated with MN-BSY extract at 5 g L-1 showed lower color loss rate and higher polyphenol oxidase inhibition, while at 1 g L-1 it showed lower firmness loss rate and lower lipid peroxidation after 6 days of storage. CONCLUSION: The results showed that PE-SCS triggers a potent antioxidant response in fresh-cut fruit and, despite it imparting a brown color to the fruit at 15 g L-1 , it may have potential for application at lower concentrations. Regarding MN-BSY, it generally decreased oxidative stress, but its effect on quality maintenance was dependent on the concentration and, thus, to confirm its potential as a fruit preservative more concentrations must be tested. © 2023 Society of Chemical Industry.


Subject(s)
Malus , Saccharum , Antioxidants , Saccharomyces cerevisiae , Mannans , Fruit , Plant Extracts/pharmacology
5.
Food Chem ; 412: 135545, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36708669

ABSTRACT

Mannans are polysaccharides whose physicochemical and biological properties render them commercialization in several products. Since these properties are strongly dependent on production conditions, the present study aims to assess the impact of different drying technologies - freeze (FDM) and spray drying (SDM) - on the structural, physicochemical, and biological properties of mannans from Saccharomyces cerevisiae. Structural analysis was assessed by FT-IR, PXRD and SEM, whereas physicochemical properties were evaluated based on sugars, protein, ash and water contents, solubility, and molecular weight distribution. Thermal behaviour was analysed by DSC, and antioxidant activity by DPPH and ABTS assays. The parameters which revealed major differences, in terms of structural and physicochemical properties regarded morphology (SEM), physical appearance (colour), moisture (3.6 ± 0.1 % and 11.9 ± 0.6 % for FDM and SDM, respectively) and solubility (1 mg/mL for FDM and 25 mg/mL for SDM). Nevertheless, these differences were not translated into the antioxidant capacity.


Subject(s)
Mannans , Saccharomyces cerevisiae , Spectroscopy, Fourier Transform Infrared , Desiccation , Antioxidants/chemistry , Freeze Drying
6.
Foods ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496561

ABSTRACT

Mannans are outstanding polysaccharides that have gained exponential interest over the years. These polysaccharides may be extracted from the cell wall of Saccharomyces cerevisiae, and recovered from the brewing or synthetic biology industries, among others. In this work, several extraction processes-physical, chemical and enzymatic-were studied, all aiming to obtain mannans from spent yeast S. cerevisiae. Their performance was evaluated in terms of yield, mannose content and cost. The resultant extracts were characterized in terms of their structure (FT-IR, PXRD and SEM), physicochemical properties (color, molecular weight distribution, sugars, protein, ash and water content) and thermal stability (DSC). The biological properties were assessed through the screening of prebiotic activity in Lactobacillus plantarum and Bifidobacterium animalis. The highest yield (58.82%) was achieved by using an alkaline thermal process, though the correspondent mannose content was low. The extract obtained by autolysis followed by a hydrothermal step resulted in the highest mannose content (59.19%). On the other hand, the extract obtained through the enzymatic hydrolysis displayed the highest prebiotic activity. This comparative study is expected to lay the scientific foundation for the obtention of well-characterized mannans from yeast, which will pave the way for their application in various fields.

7.
Foods ; 11(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36553744

ABSTRACT

Over the years, synthetic biology has been growing with the use of engineered yeast strains for the production of sustainable ingredients to meet global healthcare, agriculture, manufacturing and environmental challenges. However, as seen from the brewing industry perspective, these processes generate a substantial amount of spent yeast that contains high nutritional value related to its high protein content, showing its potential to be used as an alternative protein source. Taking into account the rising demand for protein because of the growth in the global population, the present study aims to produce peptide-rich extracts by different potentially scalable and sustainable methodologies in a circular economy approach for the food and nutraceutical industries. The results demonstrated that extraction from genetically modified strains allowed the production of extracts with an excellent nutritional profile and low molecular weight peptides. Furthermore, autolysis was shown to be a potential sustainable approach for this production, though other green metrics need to be explored in order to establish this process at an industrial level.

8.
Carbohydr Polym ; 272: 118467, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34420726

ABSTRACT

Sustainable industry practices and circular economy concepts encourage the transformation of production waste into by-products. Saccharomyces cerevisiae is widely used in fermentation industry worldwide, generating large amounts of spent yeast which is mainly directed to animal feed or discarded as waste. Instead of becoming and environmental problem, spent yeast can be directed to the extraction of valuable compounds such as mannans and mannan oligosaccharides (MOS). This review presents a compilation of the studies up to date regarding the different chemical, enzymatic, mechanical or physical processes addressed for mannans extraction and MOS production. Additionally, the existing studies on the chemical modification of mannans aimed to improve specific characteristics are also discussed. Finally, the more relevant bioactivities and potential applications of mannans, MOS and mannose are presented, together with products on the market containing these compounds.


Subject(s)
Mannans , Saccharomyces cerevisiae , Animal Feed , Dietary Supplements , Fermentation
9.
Biomolecules ; 9(1)2018 12 21.
Article in English | MEDLINE | ID: mdl-30583486

ABSTRACT

Nitric oxide (NO) is an endogenously produced molecule that has been implicated in several wound healing mechanisms. Its topical delivery may improve healing in acute or chronic wounds. In this study an antimicrobial peptide was synthesized which self-assembled upon a pH shift, forming a hydrogel. The peptide was chemically functionalized to incorporate a NO-donor moiety on lysine residues. The extent of the reaction was measured by ninhydrin assay and the NO release rate was quantified via the Griess reaction method. The resulting compound was evaluated for its antimicrobial activity against Escherichia coli, and its effect on collagen production by fibroblasts was assessed. Time-kill curves point to an initial increase in bactericidal activity of the functionalized peptide, and collagen production by human dermal fibroblasts when incubated with the NO-functionalized peptide showed a dose-dependent increase in the presence of the NO donor within a range of 0⁻20 µM.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Hydrogels/chemistry , Nitric Oxide/metabolism , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/pharmacology , Cell Line , Collagen/metabolism , Escherichia coli/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Wound Healing/drug effects
10.
Macromol Biosci ; 17(2)2017 02.
Article in English | MEDLINE | ID: mdl-27594050

ABSTRACT

The unicellular cyanobacterium Cyanothece sp. CCY 0110 is a highly efficient producer of extracellular polymeric substances (EPS), releasing up to 75% of the polymer to the culture medium. The carbohydrate polymer released to the medium (RPS) was previously isolated and characterized; it is composed of nine different monosaccharides including two uronic acids, and also containing peptides and sulfate groups. Here it is shown that the RPS spontaneously assembles with proteins at high concentrations leading to a phase transition. The proteins are released progressively and structurally intact near physiological conditions, primarily through the swelling of the polymer-protein matrix. The releasing kinetics of the proteins can be modulated through the addition of divalent cations, such as calcium. Notably, the polymer is not toxic to human dermal neonatal fibroblasts in vitro at RPS concentrations bellow 0.1 mg mL-1 . The results show that this polymer is a good candidate for the delivery of therapeutic macromolecules.


Subject(s)
Carbohydrates/chemistry , Cyanothece/chemistry , Extracellular Space/chemistry , Proteins/pharmacology , Animals , Cations, Divalent/pharmacology , Cell Death/drug effects , Chickens , Circular Dichroism , Delayed-Action Preparations , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hydrodynamics , Infant, Newborn , Ion Exchange , Isoelectric Point , Molecular Weight , Muramidase/metabolism , Procainamide , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...