Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 85(6): 1459-67, 2009.
Article in English | MEDLINE | ID: mdl-19656323

ABSTRACT

Increasing legal requirements for risk assessment and efficacy testing in the dermo-cosmetic field have led to the development of alternative test methods. In this study, the porcine skin model was chosen to test the effect of irradiation on the penetration habits of UV filters and caffeine. For decades, the pig has been recognized as an experimental animal in biomedical research thanks to its morphological and physiological similarities to humans. In this study, we wanted to investigate the effect of UV irradiation on the absorption of octocrylene (OC) and benzophenone-3 (B3) sunscreens used under those circumstances and a model hydrophilic molecule, caffeine (Caf). These particular compounds were chosen due to their different lipophilic profiles. The percutaneous penetration of the two UV filters and Caf was studied after two simulated solar radiation doses of 61.4 kJ m(-2). After irradiation simulation, the total absorbed dose was increased for OC while for B3 and Caf it was lower. Thus, modifications in percutaneous absorption have been observed, and it appears that UV could play a crucial role in this process. Moreover, it has been observed that the lipophilic profile of the studied compounds affects percutaneous penetration when irradiated.


Subject(s)
Acrylates/metabolism , Benzophenones/metabolism , Caffeine/metabolism , Skin Absorption/radiation effects , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays , Animals , Cells, Cultured , Models, Animal , Molecular Structure , Sunscreening Agents/metabolism , Swine
2.
Int J Pharm ; 374(1-2): 39-45, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19446757

ABSTRACT

Alcohol and glycol including 1,2-pentanediol, a new product in this field, were examined for their transdermal penetration enhancing in vitro properties using pig skin and caffeine as a model drug. In order to investigate a possible influence of these compounds, we followed diffusion from an aqueous solution with caffeine followed by a series of different vehicles, their compositions were: (1) in water as a control; (2) in propylene glycol/ethanol/water (25:25:48; v/v/v); (3) in 1,2-pentanediol/water (2.5:95.5, v/v); (4) in 1,2-pentanediol/water (5:93, v/v); in propylene glycol/water (5:93; v/v); and in ethanol/water (5:93; v/v). The stratum corneum/vehicle partition coefficients (K(m)), maximum flux (J), enhancement factor (EF), 24-h receptor concentration (Q(24h)) were determined and compared to control values (caffeine in water). Permeation was also expressed in percentage of the applied dose absorbed in the different compartments. In all test models, caffeine was released and penetrated into pig skin. The 1,2-pentanediol was presented as the most effective enhancer; with a low proportion of this compound (only 5%), caffeine penetrated the skin quicker and in a greater extent. While this compound showed promise as penetration enhancer, further study was required to determine its effectiveness with others drugs and its irritation potential.


Subject(s)
Caffeine/pharmacokinetics , Excipients/chemistry , Glycols/chemistry , Skin Absorption , Administration, Cutaneous , Animals , Caffeine/administration & dosage , Chemistry, Pharmaceutical , Ethanol/chemistry , In Vitro Techniques , Pentanes , Permeability , Pharmaceutical Vehicles/chemistry , Propylene Glycol/chemistry , Swine , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...