Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Chem Phys ; 159(13)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37787128

ABSTRACT

We present a theory for pitch, a matrix property that is linked to the coupling of rotational and translational motion of rigid bodies at low Reynolds numbers. The pitch matrix is a geometric property of objects in contact with a surrounding fluid, and it can be decomposed into three principal axes of pitch and their associated moments of pitch. The moments of pitch predict the translational motion in a direction parallel to each pitch axis when the object is rotated around that axis and can be used to explain translational drift, particularly for rotating helices. We also provide a symmetrized boundary element model for blocks of the resistance tensor, allowing calculation of the pitch matrix for arbitrary rigid bodies. We analyze a range of chiral objects, including chiral molecules and helices. Chiral objects with a Cn symmetry axis with n > 2 show additional symmetries in their pitch matrices. We also show that some achiral objects have non-vanishing pitch matrices, and we use this result to explain recent observations of achiral microswimmers. We also discuss the small but non-zero pitch of Lord Kelvin's isotropic helicoid.

2.
J Phys Chem B ; 125(42): 11709-11716, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34652162

ABSTRACT

We present a model to explain the mechanism behind enantiomeric separation under either shear flow or local rotational motion in a fluid. Local vorticity of the fluid imparts molecular rotation that couples to translational motion, sending enantiomers in opposite directions. Translation-rotation coupling of enantiomers is explored using the molecular hydrodynamic resistance tensor, and a molecular equivalent of the pitch of a screw is introduced to describe the degree of translation-rotation coupling. Molecular pitch is a structural feature of the molecules and can be easily computed, allowing rapid estimation of the pitch of 85 druglike molecules. Simulations of model enantiomers in a range of fluids such as Λ- and Δ-[Ru(bpy)3]Cl2 in water and (R, R)- and (S, S)-atorvastatin in methanol support predictions made using molecular pitch values. A competition model and continuum drift-diffusion equations are developed to predict separation of realistic racemic mixtures. We find that enantiomeric separation on a centimeter length scale can be achieved in hours, using experimentally achievable vorticities. Additionally, we find that certain achiral objects can also exhibit a nonzero molecular pitch.


Subject(s)
Bone Screws , Rotation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...