Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EJHaem ; 4(2): 401-409, 2023 May.
Article in English | MEDLINE | ID: mdl-37206258

ABSTRACT

This phase Ib, non-randomized, open-label study evaluates the safety and tolerability of ruxolitinib in combination with nilotinib and prednisone in patients with naïve or ruxolitinib-resistant myelofibrosis (MF). A total of 15 patients with primary or secondary MF received the study treatment; 13 patients had received prior ruxolitinib treatment (86.7%). Eight patients completed seven cycles (53.3%) and six patients completed twelve cycles of treatment (40%). All the patients experienced at least one adverse event (AE) during the study (the most common AEs were hyperglycemia, asthenia, and thrombocytopenia), and 14 patients registered at least one treatment-related AE (the most common treatment-related AEs were hyperglycemia (22.2%; three grade 3 cases). Five treatment-related serious AEs (SAEs) were reported in two patients (13.3%). No deaths were registered throughout the study. No dose-limiting toxicity was observed. Four out of fifteen (27%) patients experienced a 100% spleen size reduction at Cycle 7, and two additional patients achieved a >50% spleen size reduction, representing an overall response rate of 40% at Cycle 7. In conclusion, the tolerability of this combination was acceptable, and hyperglycemia was the most frequent treatment-related AE. Ruxolitinib in combination with nilotinib and prednisone showed relevant clinical activity in patients with MF. This trial was registered with EudraCT Number 2016-005214-21.

2.
J Clin Invest ; 133(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-36821382

ABSTRACT

Calmodulin (CaM) plays critical roles in cardiomyocytes, regulating Na+ (NaV) and L-type Ca2+ channels (LTCCs). LTCC dysregulation by mutant CaMs has been implicated in action potential duration (APD) prolongation and arrhythmogenic long QT (LQT) syndrome. Intriguingly, D96V-CaM prolongs APD more than other LQT-associated CaMs despite inducing comparable levels of LTCC dysfunction, suggesting dysregulation of other depolarizing channels. Here, we provide evidence implicating NaV dysregulation within transverse (T) tubules in D96V-CaM-associated arrhythmias. D96V-CaM induced a proarrhythmic late Na+ current (INa) by impairing inactivation of NaV1.6, but not the predominant cardiac NaV isoform NaV1.5. We investigated arrhythmia mechanisms using mice with cardiac-specific expression of D96V-CaM (cD96V). Super-resolution microscopy revealed close proximity of NaV1.6 and RyR2 within T-tubules. NaV1.6 density within these regions increased in cD96V relative to WT mice. Consistent with NaV1.6 dysregulation by D96V-CaM in these regions, we observed increased late NaV activity in T-tubules. The resulting late INa promoted aberrant Ca2+ release and prolonged APD in myocytes, leading to LQT and ventricular tachycardia in vivo. Cardiac-specific NaV1.6 KO protected cD96V mice from increased T-tubular late NaV activity and its arrhythmogenic consequences. In summary, we demonstrate that D96V-CaM promoted arrhythmias by dysregulating LTCCs and NaV1.6 within T-tubules and thereby facilitating aberrant Ca2+ release.


Subject(s)
Calmodulin , Long QT Syndrome , Mice , Animals , Calmodulin/genetics , Calmodulin/metabolism , Calcium/metabolism , Sodium/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Long QT Syndrome/genetics , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics
3.
Toxicol Appl Pharmacol ; 434: 115799, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34798142

ABSTRACT

Arsenic is a naturally occurring element present in food, soil and water and human exposure is associated with increased cancer risk. Arsenic inhibits DNA repair at low, non-cytotoxic concentrations and amplifies the mutagenic and carcinogenic impact of other DNA-damaging agents, such as ultraviolet radiation (UVR). Arsenic exposure leads to oxidation of zinc coordinating cysteine residues, zinc loss and decreased activity of the DNA repair protein poly(ADP)ribose polymerase (PARP)-1. Because arsenic stimulates NADPH oxidase (NOX) activity leading to generation of reactive oxygen species (ROS), the goal of this study was to investigate the role of NOX in arsenic-induced inhibition of PARP activity and retention of DNA damage. NOX involvement in the arsenic response was assessed in vitro and in vivo. Keratinocytes were treated with or without arsenite, solar-simulated UVR, NOX inhibitors and/or isoform specific NOX siRNA. Knockdown or inhibition of NOX decreased arsenite-induced ROS, PARP-1 oxidation and DNA damage retention, while restoring arsenite inhibition of PARP-1 activity. The NOX2 isoform was determined to be the major contributor to arsenite-induced ROS generation and DNA damage retention. In vivo DNA damage was measured by immunohistochemical staining and analysis of dorsal epidermis sections from C57BI/6 and p91phox knockout (NOX2-/-) mice. There was no significant difference in solar-simulated UVR DNA damage as detected by percent PH2AX positive cells within NOX2-/- mice versus control. In contrast, arsenite-dependent retention of UVR-induced DNA damage was markedly reduced. Altogether, the in vitro and in vivo findings indicate that NOX is involved in arsenic enhancement of UVR-induced DNA damage.


Subject(s)
Arsenic/toxicity , DNA Damage/drug effects , DNA Damage/radiation effects , Gene Expression Regulation, Enzymologic/drug effects , NADPH Oxidase 2/metabolism , Ultraviolet Rays , Animals , Cell Line , Humans , Keratinocytes/drug effects , Keratinocytes/radiation effects , Mice , Mice, Knockout , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 2/genetics , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...