Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Org Chem ; 84(23): 15538-15548, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31693372

ABSTRACT

The fact that intramolecular resonance-assisted hydrogen bonds (RAHBs) are stronger than conventional ones is attributed to the partial delocalization of the π-electrons within the hydrogen bond (HB) motif, the so-called quasi-ring. If an aromatic ring is involved in the formation of the RAHB, previous studies have shown that there is an interplay between aromaticity and HB strength. Moreover, in 1,3-dihydroxyaryl-2-aldehydes, some of us found that the position of the quasi-ring formed by the substituents interacting through RAHB influences the strength of the H bonding, the HBs being stronger when a kinked-like structure is generated by formation of the quasi-ring. In this work, we explore this concept further by considering a set of acenes and phenacenes of different sizes with two o-hydroxyaldehyde substituents. Calculations with the CAM-B3LYP/6-311++G(d,p) + GD3B method show that for long acenes or phenacenes, once the substituent effect loses importance because quasi-rings are pulled apart far from each other, the different topologies rule the HB distances. This fact can be explained in most cases using an extended Clar's aromatic π-sextet model. In some kinked systems, however, the justification from the Clar model has to be complemented by taking into account the repulsion between hydrogen atoms. Triphenylene-like compounds with different numbers of benzene rings have been studied, finding out a very good relationship between aromaticity of the ipso- and quasi-rings with the RAHB distances. This result confirms the importance of the communication of the π-systems of the ipso- and quasi-rings.

2.
Front Chem ; 6: 561, 2018.
Article in English | MEDLINE | ID: mdl-30515378

ABSTRACT

It is well-known that kinked phenacenes are more stable than their isomeric linear acenes, the archetypal example being phenanthrene that is more stable than anthracene by about 4-8 kcal/mol. In previous studies, the origin of the higher stability of kinked polycyclic aromatic hydrocarbons (PAHs) was found to be better π-bonding interactions, i.e., larger aromaticity, in kinked as compared to linear PAHs. Some years ago, however, Dominikowska and Palusiak (2011) found that dicationic linear anthracene is more stable than the dicationic kinked phenanthrene. Therefore, these authors showed that, in some cases, the linear topology in PAHs can be preferred over the kinked one. Our results using energy decomposition analyses in combination with the turn-upside-down approach show that the origin of the higher stability of dicationic anthracene is the same as in the neutral species, i.e., better π-bonding interactions. A similar result is found for the kinked and straight pyrano-chromenes. We conclude that the aromaticity is the driving force that determines the relative stability of kinked vs. straight topologies in PAHs.

3.
Chemistry ; 24(39): 9853-9859, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29665099

ABSTRACT

Electrides are ionic substances containing isolated electrons. These confined electrons are topologically characterised by a quasi-atom, that is, a non-nuclear attractor (NNA) of the electron density. The electronic structure of the octahedral 4 A1g Li6+ and 5 A1g Be6 species shows that these species have a large number of NNAs. These NNAs have highly delocalised electron densities and, as a result, the chemical bonding pattern of these systems is reminiscent of that in solid metals, in which metal cations are surrounded by a "sea" of delocalised valence electrons. We propose the term metal cluster electrides to refer to this new class of compounds. In this study, we establish a computational protocol to identify, characterize, and design metal cluster electrides and we elucidate the intricate bonding patterns of this particular type of species.

4.
J Phys Chem A ; 122(8): 2279-2287, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29378123

ABSTRACT

Intramolecular resonance-assisted hydrogen bonds (RAHBs) are stronger than conventional hydrogen bonds (HBs) thanks to the extra stabilization connected with the partial delocalization of the π-electrons within the HB motif containing conjugated formally single and double bonds. When these conjugated bonds are part of an aromatic ring, there is an interplay between resonance-assisted hydrogen bonding and the aromaticity of the ring. The main aim of the present work is to analyze the changes in RAHB strength by substitution in the aromatic ring. For this purpose, we use density functional theory methods to study all possible mono- and disubstitutions in the four free positions of the aromatic ring of o-hydroxybenzaldehyde. As substituents, we consider three π-electron donating groups (EDG: NH2, OH, and F) and three π-electron withdrawing groups (EWG: NO2, NO, and CN). We show that it is possible to tune the HB bond distance in the RAHB by locating different substituents in given positions of the aromatic ring. Indeed, certain combinations of EDG and EWD result in a reduction or increase of the HB distance by up to 0.05 Å. Results found can be explained by considering the existence of a resonance effect of the π-electrons within the HB motif.

5.
J Comput Chem ; 38(18): 1606-1611, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28394019

ABSTRACT

The bonding patterns in coronene are complicated and controversial as denoted by the lack of consensus of how its electronic structure should be described. Among the different proposed descriptions, the two most representative are those generated by Clar's aromatic π-sextet and adaptative natural density partitioning (AdNDP) models. Quantum-chemical calculations at the density functional theory level are performed to evaluate the model that gives a better representation of coronene. To this end, we analyse the molecular structure of coronene, we estimate the aromaticity of its inner and outer rings using various local aromaticity descriptors, and we assess its chemical reactivity from the study of the Diels-Alder reaction with cyclopentadiene. Results obtained are compared with those computed for naphthalene and phenanthrene. Our conclusion is that Clar's π-sextet model provides the representation of coronene that better describes the physicochemical behavior of this molecule. © 2017 Wiley Periodicals, Inc.

6.
Phys Chem Chem Phys ; 18(17): 11700-6, 2016 04 28.
Article in English | MEDLINE | ID: mdl-26689394

ABSTRACT

It is generally observed that quintessential aromatic compounds have delocalised electronic configurations that are of closed-shells or open-shells half-filled with the same spin electrons. Guided by this property, we search for aromatic octahedral clusters of the type X6(q) (X = Li-C and Be-Si, q = -2 to +4) in (2S+1)A1g electronic states with spin multiplicities ranging from the singlet to the septet. With some exceptions, we find that closed-shells or open-shells half-filled with same spin electron systems have large multicentre indices and negative NICS values that are characteristic patterns of aromatic compounds. Our results confirm the existence of octahedral aromaticity but do not allow us to define a general rule for octahedral aromaticity because the ordering of molecular orbitals does not remain the same for different octahedral clusters.

8.
J Chem Theory Comput ; 6(9): 2736-42, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-26616075

ABSTRACT

In this work we present a 2-fold approximation for the calculation of the electron localization function (ELF) which avoids the use of the two-particle density (2-PD). The first approximation is used for the calculation of the ELF itself and the second one is used to approximate pair populations integrated in the ELF basins. Both approximations only need the natural orbitals and their occupancies, which are available for most methods used in electronic structure calculations. In this way, methods such as CCSD and MP2 can be used for the calculation of the ELF despite the lack of a pertinent definition of the 2-PD. By avoiding the calculation of the 2-PD, the present formulation provides the means for routine calculations of the ELF in medium-size molecules with correlated methods. The performance of this approximation is shown in a number of examples.

9.
Chemistry ; 15(23): 5814-22, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19388032

ABSTRACT

Dihydrogen bonds (DHBs) play a role in, among others, crystal packing, organometallic reaction mechanisms, and potential hydrogen-storage materials. In this work we have analyzed the central H-H bond in linear H(4), LiH...HX, BH(4)(-)...HX, and AlH(4)(-)...HX complexes with various X by using the quantitative molecular orbital model contained in Kohn-Sham density functional theory at the BP86/TZ2P level of theory. First, we address the questions of if and how one can distinguish, in principle, between a H...H donor-acceptor DHB and the formation of an H(2) molecule by using the simple H(4) model system. The results of these analyses have been used to gain an understanding of the bonding in more realistic model systems (some of which have been studied experimentally), and how this differs from the bonding in H(4).


Subject(s)
Algorithms , Hydrogen/chemistry , Models, Molecular , Hydrogen Bonding , Thermodynamics , Water/chemistry
10.
J Chem Theory Comput ; 5(9): 2574-81, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-26616632

ABSTRACT

Molecules of utmost importance like DNA and RNA nucleobases are predicted to be nonplanar by a typical ab initio method, such as second order Møller-Plesset perturbation theory (MP2) combined with standard Pople's basis sets. Similarly to the case of other planar aromatic systems, these pitfalls can be explained in terms of intramolecular basis set superposition error (BSSE) effects, induced by local basis set deficiencies. We demonstrate that conventional BSSE correction techniques such as the Counterpoise method can account for this wrong behavior and provide proper correction whenever spurious results occur, mainly in case of thymine, uracil and guanine but also to lower extent for adenine and cytosine. We also show that special care must be taken when assessing the BSSE by means of ghost-orbital calculations for strongly overlapping fragments. Often molecular orbitals in the isolated fragment calculation have a different orientation as in the ghost-orbital calculation. This can lead to bogus derivatives of the CP-correction term, essential to account for geometry and vibrational BSSE effects.

11.
J Chem Phys ; 128(14): 144108, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18412424

ABSTRACT

Recently, the surprising result that ab initio calculations on benzene and other planar arenes at correlated MP2, MP3, configuration interaction with singles and doubles (CISD), and coupled cluster with singles and doubles levels of theory using standard Pople's basis sets yield nonplanar minima has been reported. The planar optimized structures turn out to be transition states presenting one or more large imaginary frequencies, whereas single-determinant-based methods lead to the expected planar minima and no imaginary frequencies. It has been suggested that such anomalous behavior can be originated by two-electron basis set incompleteness error. In this work, we show that the reported pitfalls can be interpreted in terms of intramolecular basis set superposition error (BSSE) effects, mostly between the C-H moieties constituting the arenes. We have carried out counterpoise-corrected optimizations and frequency calculations at the Hartree-Fock, B3LYP, MP2, and CISD levels of theory with several basis sets for a number of arenes. In all cases, correcting for intramolecular BSSE fixes the anomalous behavior of the correlated methods, whereas no significant differences are observed in the single-determinant case. Consequently, all systems studied are planar at all levels of theory. The effect of different intramolecular fragment definitions and the particular case of charged species, namely, cyclopentadienyl and indenyl anions, respectively, are also discussed.

12.
J Phys Chem A ; 111(20): 4506-12, 2007 May 24.
Article in English | MEDLINE | ID: mdl-17455920

ABSTRACT

B3LYP/6-31++G(d,p) and MP2/6-31++G(d,p) calculations for a series of hydrogen- and dihydrogen-bonded systems have been carried out in order to analyze the topology of the electron density and the energy densities at the respective energy-optimized bond critical points. Even though there are no significant differences when these properties are represented as a function of the dimerization energy, they can be separated into two well-defined sets if those properties are correlated with intermolecular distances. When analyzing the dependence of various properties with equilibrium bond lengths, the specific trends of dihydrogen bond systems consist of (a) lower electron density at the bond critical point, and (b) lower concentration/depletion of that density which can be translated in a different behavior for the Laplacian components. Furthermore, the sets of molecules form two different plots which allow for a valuable classification between hydrogen- and dihydrogen-bonded systems.


Subject(s)
Hydrogen/chemistry , Dimerization , Electrons , Hydrogen Bonding
13.
Faraday Discuss ; 135: 325-45; discussion 367-401, 503-6, 2007.
Article in English | MEDLINE | ID: mdl-17328437

ABSTRACT

Electron sharing indexes (ESI) have been applied to numerous bonding situations to provide an insight into the nature of the molecular electronic structures. Some of the most popular ESI given in the literature, namely, the delocalization index (DI), defined in the context of the quantum theory of atoms in molecules (QTAIM), and the Fuzzy-Atom bond order (FBO), are here calculated at a correlated level for a wide set of molecules. Both approaches are based on the same quantity, the exchange-correlation density, to recover the electron sharing extent, and their differences lie in the definition of an atom in a molecule. In addition, while FBO atomic regions enable accurate and fast integrations, QTAIM definition of an atom leads to atomic domains that occasionally make the integration over these ones rather cumbersome. Besides, when working with a many-body wavefunction one can decide whether to calculate the ESI from first-order density matrices, or from second-order ones. The former way is usually preferred, since it avoids the calculation of the second-order density matrix, which is difficult to handle. Results from both definitions are discussed. Although these indexes are quite similar in their definition and give similar descriptions, when analyzed in greater detail, they reproduce different features of the bonding. In this manuscript DI is shown to explain certain bonding situations that FBO fails to cope with. Finally, these indexes are applied to the description of the aromaticity, through the aromatic fluctuation (FLU) and the para-DI (PDI) indexes. FLU and PDI indexes have been successfully applied using the DI measures, but other ESI based on other partitions such as Fuzzy-Atom can be used. The results provided in this manuscript for carbon skeleton molecules encourage the use of FBO for FLU and PDI indexes even at the correlated level.

14.
Inorg Chem ; 45(26): 10520-9, 2006 Dec 25.
Article in English | MEDLINE | ID: mdl-17173407

ABSTRACT

The synthesis and isolation of the complex cis,fac-[RuIICl2(bpea)(PPh3)][3; bpea = N,N-bis(2-pyridylmethyl)ethylamine] and three geometrical isomers of the complex [RuIICl(bpea)(dppe)](BF4) [4; dppe = (1,2-diphenylphosphino)ethane], trans,fac (4a), cis,fac (4b), and mer(down) (4c), have been described (see Chart 1 for a drawing of their structures). These complexes have been characterized through analytical, spectroscopic (IR, UV/vis, and 1D and 2D NMR), and electrochemical (cyclic voltammetry) techniques. In addition, complexes 3, 4a, and 4b have been further characterized in the solid state through monocrystal X-ray diffraction analysis. The molecular and electronic structures of isomers 4a, 4b, 4c, and 4d (the mer(up) isomer) have also been studied by means of density functional theory (DFT) calculations. Furthermore, their low-energy electronic transitions have been simulated using time-dependent DFT approaches, which have allowed unraveling of their metal-to-ligand charge-transfer nature. Complexes 3 and 4a-c are capable of catalyzing H-transfer types of reactions between alcohols and aromatic ketones such as acetophenone and 2,2-dimethylpropiophenone (DP). A strong influence of the facial versus meridional geometry in the bpea ligand coordination mode is observed for these catalytic reactions, with the meridional isomer being much more active than the facial one. The meridional isomer is even capable of carrying out the H-transfer reaction of bulky substrates such as DP at room temperature.

15.
J Chem Phys ; 125(2): 24301, 2006 Jul 14.
Article in English | MEDLINE | ID: mdl-16848578

ABSTRACT

The electron localization function (ELF) has been proven so far a valuable tool to determine the location of electron pairs. Because of that, the ELF has been widely used to understand the nature of the chemical bonding and to discuss the mechanism of chemical reactions. Up to now, most applications of the ELF have been performed with monodeterminantal methods and only few attempts to calculate this function for correlated wave functions have been carried out. Here, a formulation of ELF valid for mono- and multiconfigurational wave functions is given and compared with previous recently reported approaches. The method described does not require the use of the homogeneous electron gas to define the ELF, at variance with the ELF definition given by Becke. The effect of the electron correlation in the ELF, introduced by means of configuration interaction with singles and doubles calculations, is discussed in the light of the results derived from a set of atomic and molecular systems.

16.
J Phys Chem A ; 110(15): 5108-13, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16610832

ABSTRACT

In the past few years, there has been a growing interest for aromaticity measures based on electron density descriptors, the para-delocalization (PDI) and the aromatic fluctuation (FLU) indexes being two recent examples. These aromaticity indexes have been applied successfully to describe the aromaticity of carbon skeleton molecules. Although the results obtained are encouraging, because they follow the trends of other existing aromaticity measures, their calculation is rather expensive because they are based on electron delocalization indexes (DI) that involve cumbersome atomic integrations. However, cheaper electron-sharing indexes (ESIs), which in principle could play the same role as the DI in such aromaticity calculations, can be found in the literature. In this letter we show that PDI and FLU can be calculated using fuzzy-atom bond order (FBO) measures instead of DIs with an important saving of computing time. In addition, a basis-set-dependence study is performed to assess the reliability of these measures. FLU and PDI based on FBO are shown to be both good aromaticity indexes and almost basis-set-independent measures. This result opens up a wide range of possibilities for PDI and FLU to also be calculated on large organic systems. As an example, the DI and FBO-based FLU and PDI indexes have also been calculated and compared for the C60 molecule.

17.
Inorg Chem ; 45(9): 3569-81, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16634587

ABSTRACT

Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.

18.
J Phys Chem B ; 110(13): 6526-36, 2006 Apr 06.
Article in English | MEDLINE | ID: mdl-16570950

ABSTRACT

In this work we analyze CO binding on small neutral copper clusters, Cun (n = 1-9). Molecular structures and reactivity descriptors of copper clusters are computed and discussed. The results show that the condensed Fukui functions and the frontier molecular orbital theory are useful tools to predict the selectivity of CO adsorption on these small clusters. To get further insight into the CO binding to copper clusters, an energy decomposition analysis of the CO binding energy is performed. The Cs symmetry of the formed CunCO clusters (n = 1-8) allows the separation between the orbital interaction terms corresponding to donation and back-donation. It is found that, energetically, the donation is twice as important as back-donation.

19.
Chemistry ; 12(10): 2798-807, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16416493

ABSTRACT

A new family of Ru(II) complexes containing the tridentate meridional 2,2':6',2''-terpyridine (trpy) ligand, a C(2)-symmetric didentate chiral oxazolinic ligand 1,2-bis[4'-alkyl-4',5'-dihydro-2'-oxazolyl]benzene (Phbox-R, R = Et or iPr), and a monodentate ligand, of general formula [Ru(Y)(trpy)(Phbox-R)](n+) (Y = Cl, H(2)O, py, MeCN, or 2-OH-py (2-hydroxypyridine)) have been prepared and thoroughly characterized. In the solid state the complexes have been characterized by IR spectroscopy and by X-ray diffraction analysis in two cases. In solution, UV/Vis, cyclic voltammetry (CV), and one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy techniques have been used. We have also performed density functional theory (DFT) calculations with these complexes to interpret and complement experimental results. The oxazolinic ligand Phbox-R exhibits free rotation along the phenyloxazoline axes. Upon coordination this rotation is restricted by an energy barrier of 26.0 kcal mol(-1) for the case of [Ru(trpy)(Phbox-iPr)(MeCN)](2+) thus preventing its potential interconversion. Furthermore due to steric effects the two atropisomers differ in energy by 5.7 kcal mol(-1) and as a consequence only one of them is obtained in the synthesis. Subtle but important structural effects occur upon changing the monodentate ligands that are detected by NMR spectroscopy in solution and interpreted by using their calculated DFT structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...